IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v332y2024i1d10.1007_s10479-022-04528-3.html
   My bibliography  Save this article

A deep learning-based approach for performance assessment and prediction: A case study of pulp and paper industries

Author

Listed:
  • Sunil Kumar Jauhar

    (Indian Institute of Management Kashipur)

  • Praveen Vijaya Raj Pushpa Raj

    (Indian Institute of Management Raipur)

  • Sachin Kamble

    (Strategy (Operations and Supply Chain Management), EDHEC Business School)

  • Saurabh Pratap

    (Indian Institute of Technology (BHU))

  • Shivam Gupta

    (NEOMA Business School)

  • Amine Belhadi

    (Cadi Ayyad University)

Abstract

The pulp and paper industry is critical to global industrial and economic development. Recently, India's pulp and paper industries have been facing severe competitive challenges. The challenges have impaired the environmental performance and resulted in the closure of several operations. Assessment and prediction of the performance of the Indian pulp and paper industry using various parameters is a critical task for researchers. This study proposes a framework for performance assessment and prediction based on Data Envelopment Analysis (DEA), Artificial Neural Networks, and Deep Learning (DL) to assist industry administration and decision-making. We presented a case study based on eight industries to demonstrate the methodology's applicability. This study analyses and predicts industry performance based on sample data observations over 30 years. The result suggests the DEA-DL-based efficiency prediction has an overall MSE of 0.08 compared with the actual efficiency. Furthermore, the efficiency rankings are compared between the three techniques. The results suggest that the integrated DEA-DL method is primarily accurate in most scenarios with the actual values. The findings of this study provide a comprehensive analysis of environmental performance for policymakers.

Suggested Citation

  • Sunil Kumar Jauhar & Praveen Vijaya Raj Pushpa Raj & Sachin Kamble & Saurabh Pratap & Shivam Gupta & Amine Belhadi, 2024. "A deep learning-based approach for performance assessment and prediction: A case study of pulp and paper industries," Annals of Operations Research, Springer, vol. 332(1), pages 405-431, January.
  • Handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-022-04528-3
    DOI: 10.1007/s10479-022-04528-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04528-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04528-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haider, Salman & Danish, Mohd Shadab & Sharma, Ruchi, 2019. "Assessing energy efficiency of Indian paper industry and influencing factors: A slack-based firm-level analysis," Energy Economics, Elsevier, vol. 81(C), pages 454-464.
    2. Bhat, Javed Ahmad & Haider, Salman & Kamaiah, Bandi, 2018. "Interstate energy efficiency of Indian paper industry: A slack-based non-parametric approach," Energy, Elsevier, vol. 161(C), pages 284-298.
    3. John S. Liu & Louis Y. Y. Lu & Wen-Min Lu, 2016. "Research Fronts and Prevailing Applications in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 543-574, Springer.
    4. You Li & Lu Liu, 2012. "Hybrid artificial neural network and statistical model for forecasting project total duration in earned value management," International Journal of Networking and Virtual Organisations, Inderscience Enterprises Ltd, vol. 10(3/4), pages 402-413.
    5. Avkiran, Necmi K., 2001. "Investigating technical and scale efficiencies of Australian Universities through data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 35(1), pages 57-80, March.
    6. Fare, Rolf & Grosskopf, Shawna & Tyteca, Daniel, 1996. "An activity analysis model of the environmental performance of firms--application to fossil-fuel-fired electric utilities," Ecological Economics, Elsevier, vol. 18(2), pages 161-175, August.
    7. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Runar Brännlund & Yangho Chung & Rolf Färe & Shawna Grosskopf, 1998. "Emissions Trading and Profitability: The Swedish Pulp and Paper Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(3), pages 345-356, October.
    10. Duygun, Meryem & Prior, Diego & Shaban, Mohamed & Tortosa-Ausina, Emili, 2016. "Disentangling the European airlines efficiency puzzle: A network data envelopment analysis approach," Omega, Elsevier, vol. 60(C), pages 2-14.
    11. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    12. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    13. Daniela Carlucci & Paolo Renna & Giovanni Schiuma, 2013. "Evaluating service quality dimensions as antecedents to outpatient satisfaction using back propagation neural network," Health Care Management Science, Springer, vol. 16(1), pages 37-44, March.
    14. Adler, Nicole & Martini, Gianmaria & Volta, Nicola, 2013. "Measuring the environmental efficiency of the global aviation fleet," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 82-100.
    15. Seiford, Lawrence M. & Zhu, Joe, 2005. "A response to comments on modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 161(2), pages 579-581, March.
    16. Debrupa Chakraborty & Joyashree Roy, 2015. "Ecological footprint of paperboard and paper production unit in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 909-921, August.
    17. Rita Laura D’Ecclesia & Daniele Clementi, 2021. "Volatility in the stock market: ANN versus parametric models," Annals of Operations Research, Springer, vol. 299(1), pages 1101-1127, April.
    18. Behnam Talebjedi & Timo Laukkanen & Henrik Holmberg & Esa Vakkilainen & Sanna Syri, 2021. "Energy Efficiency Analysis of the Refining Unit in Thermo-Mechanical Pulp Mill," Energies, MDPI, vol. 14(6), pages 1-18, March.
    19. Peng, Lihong & Zeng, Xiaoling & Wang, Yejun & Hong, Gui-Bing, 2015. "Analysis of energy efficiency and carbon dioxide reduction in the Chinese pulp and paper industry," Energy Policy, Elsevier, vol. 80(C), pages 65-75.
    20. Kuosmanen, Timo & Matin, Reza Kazemi, 2009. "Theory of integer-valued data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 192(2), pages 658-667, January.
    21. Misiunas, Nicholas & Oztekin, Asil & Chen, Yao & Chandra, Kavitha, 2016. "DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status," Omega, Elsevier, vol. 58(C), pages 46-54.
    22. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2017. "Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model," Energy, Elsevier, vol. 118(C), pages 231-245.
    23. Sepideh Kaffash & Marianna Marra, 2017. "Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds," Annals of Operations Research, Springer, vol. 253(1), pages 307-344, June.
    24. Sagarra, Marti & Mar-Molinero, Cecilio & Agasisti, Tommaso, 2017. "Exploring the efficiency of Mexican universities: Integrating Data Envelopment Analysis and Multidimensional Scaling," Omega, Elsevier, vol. 67(C), pages 123-133.
    25. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    26. Qing Cao & Mark Parry & Karyl Leggio, 2011. "The three-factor model and artificial neural networks: predicting stock price movement in China," Annals of Operations Research, Springer, vol. 185(1), pages 25-44, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Utsav Pandey & Sanjeet Singh, 2022. "Data envelopment analysis in hierarchical category structure with fuzzy boundaries," Annals of Operations Research, Springer, vol. 315(2), pages 1517-1549, August.
    2. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    3. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    4. Taleb, Mushtaq & Khalid, Ruzelan & Ramli, Razamin & Ghasemi, Mohammad Reza & Ignatius, Joshua, 2022. "An integrated bi-objective data envelopment analysis model for measuring returns to scale," European Journal of Operational Research, Elsevier, vol. 296(3), pages 967-979.
    5. Peykani, Pejman & Seyed Esmaeili, Fatemeh Sadat & Pishvaee, Mir Saman & Rostamy-Malkhalifeh, Mohsen & Hosseinzadeh Lotfi, Farhad, 2024. "Matrix-based network data envelopment analysis: A common set of weights approach," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    6. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    7. Mohamed Dia & Amirmohsen Golmohammadi & Pawoumodom M. Takouda, 2020. "Relative Efficiency of Canadian Banks: A Three-Stage Network Bootstrap DEA," JRFM, MDPI, vol. 13(4), pages 1-25, April.
    8. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.
    9. Chen, Ya & Tsionas, Mike G. & Zelenyuk, Valentin, 2021. "LASSO+DEA for small and big wide data," Omega, Elsevier, vol. 102(C).
    10. Halkos, George & Petrou, Kleoniki Natalia, 2018. "Assessment of national waste generation in EU Member States’ efficiency," MPRA Paper 84590, University Library of Munich, Germany.
    11. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    12. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2018. "Measuring the inefficiency of Chinese research universities based on a two-stage network DEA model," Journal of Informetrics, Elsevier, vol. 12(1), pages 10-30.
    13. Hisham Alidrisi & Mehmet Emin Aydin & Abdullah Omer Bafail & Reda Abdulal & Shoukath Ali Karuvatt, 2019. "Monitoring the Performance of Petrochemical Organizations in Saudi Arabia Using Data Envelopment Analysis," Mathematics, MDPI, vol. 7(6), pages 1-16, June.
    14. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    15. Hongwei Li & Dongyang Ma & Wei Cui & Min Tao & Jiahui Zhang, 2023. "The Evaluation of Comprehensive Teaching and Research Efficiency and Its Key Influencing Factors Analysis of “Double First-Class” Universities in China," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    16. Li, Yongjun & Liu, Jin & Ang, Sheng & Yang, Feng, 2021. "Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018winter Olympic Games," Omega, Elsevier, vol. 102(C).
    17. Daraio, Cinzia & Kerstens, Kristiaan & Nepomuceno, Thyago & Sickles, Robin C., 2019. "Empirical Surveys of Frontier Applications: A Meta-Review," Working Papers 19-005, Rice University, Department of Economics.
    18. Vladimír Holý, 2022. "The impact of operating environment on efficiency of public libraries," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 395-414, March.
    19. Khoshnevis, Pegah & Teirlinck, Peter, 2018. "Performance evaluation of R&D active firms," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 16-28.
    20. Holý, Vladimír, 2024. "Ranking-based second stage in data envelopment analysis: An application to research efficiency in higher education," Operations Research Perspectives, Elsevier, vol. 12(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-022-04528-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.