Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-31354-9
Download full text from publisher
References listed on IDEAS
- Akashi, Osamu & Hijioka, Yasuaki & Masui, Toshihiko & Hanaoka, Tatsuya & Kainuma, Mikiko, 2012. "GHG emission scenarios in Asia and the world: The key technologies for significant reduction," Energy Economics, Elsevier, vol. 34(S3), pages 346-358.
- Huo, Hong & Zhang, Qiang & He, Kebin & Yao, Zhiliang & Wang, Michael, 2012. "Vehicle-use intensity in China: Current status and future trend," Energy Policy, Elsevier, vol. 43(C), pages 6-16.
- Nakamura, Kazuki & Hayashi, Yoshitsugu, 2013. "Strategies and instruments for low-carbon urban transport: An international review on trends and effects," Transport Policy, Elsevier, vol. 29(C), pages 264-274.
- Kyle, Page & Kim, Son H., 2011. "Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands," Energy Policy, Elsevier, vol. 39(5), pages 3012-3024, May.
- Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
- Henri-David Waisman & Celine Guivarch & Franck Lecocq, 2013. "The transportation sector and low-carbon growth pathways: modelling urban, infrastructure, and spatial determinants of mobility," Climate Policy, Taylor & Francis Journals, vol. 13(sup01), pages 106-129, March.
- Stefan Bakker & Mark Zuidgeest & Heleen de Coninck & Cornie Huizenga, 2014. "Transport, Development and Climate Change Mitigation: Towards an Integrated Approach," Transport Reviews, Taylor & Francis Journals, vol. 34(3), pages 335-355, May.
- Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
- O. Y. Edelenbosch & A. F. Hof & B. Nykvist & B. Girod & D. P. Vuuren, 2018. "Transport electrification: the effect of recent battery cost reduction on future emission scenarios," Climatic Change, Springer, vol. 151(2), pages 95-108, November.
- Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
- Felix Creutzig & Joyashree Roy & William F. Lamb & Inês M. L. Azevedo & Wändi Bruine de Bruin & Holger Dalkmann & Oreane Y. Edelenbosch & Frank W. Geels & Arnulf Grubler & Cameron Hepburn & Edgar G. H, 2018. "Towards demand-side solutions for mitigating climate change," Nature Climate Change, Nature, vol. 8(4), pages 260-263, April.
- Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
- Mishra, Gouri S. & Kyle, Page & Teter, Jacob & Morrison, Geoffrey M. & Kim, Son H. & Yeh, Sonia, 2013. "Transportation Module of Global Change Assessment Model (GCAM): Model Documentation- Version 1.0," Institute of Transportation Studies, Working Paper Series qt8nk2c96d, Institute of Transportation Studies, UC Davis.
- Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
- Daniel Krzyzanowski & Socrates Kypreos & Leonardo Barreto, 2008. "Supporting hydrogen based transportation: case studies with Global MARKAL Model," Computational Management Science, Springer, vol. 5(3), pages 207-231, May.
- Bastien Girod & Detlef Vuuren & Maria Grahn & Alban Kitous & Son Kim & Page Kyle, 2013. "Climate impact of transportation A model comparison," Climatic Change, Springer, vol. 118(3), pages 595-608, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Zhenni & Liu, Xi & Li, Jianglong, 2022. "Identifying channels of environmental impacts of transport sector through sectoral linkage analysis," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
- Leal Silva, Jean Felipe & Nogueira, Luiz Augusto Horta & Cantarella, Heitor & Rossetto, Raffaella & Maciel Filho, Rubens & Souza, Glaucia Mendes, 2025. "Meta-data analysis of biofuels in emerging markets of Africa and Asia: Greenhouse gas savings and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
- Zhang, Yaxin & Shan, Yuli & Zheng, Xinzhu & Wang, Can & Guan, Yuru & Yan, Jin & Ruzzenenti, Franco & Hubacek, Klaus, 2023. "Energy price shocks induced by the Russia-Ukraine conflict jeopardize wellbeing," Energy Policy, Elsevier, vol. 182(C).
- Cai, Jinyang & Zhu, Mengze & Wu, Jian & Chen, Xueli & Xu, Junjie & Shen, Zhi-Yang, 2025. "Evaluating the impact of new energy vehicle subsidies on urban carbon emissions: Evidence from 261 Chinese cities," Renewable Energy, Elsevier, vol. 240(C).
- Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
- Zhang, Bin & Niu, Niu & Li, Hao & Wang, Zhaohua, 2023. "Assessing the efforts of coal phaseout for carbon neutrality in China," Applied Energy, Elsevier, vol. 352(C).
- Ye, Hui & Wu, Fei & Yan, Tiantian & Li, Zexuan & Zheng, Zhengnan & Zhou, Dequn & Wang, Qunwei, 2024. "Decarbonizing urban passenger transportation: Policy effectiveness and interactions," Energy, Elsevier, vol. 311(C).
- Kan Wu & Jianrong Ding & Jingli Lin & Guanjie Zheng & Yi Sun & Jie Fang & Tu Xu & Yongdong Zhu & Baojing Gu, 2025. "Big-data empowered traffic signal control could reduce urban carbon emission," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
- Suh, Jangwon, 2025. "Economic analysis of a solar roof as an optional extra to electric vehicles in Korea: A case study," Renewable Energy, Elsevier, vol. 239(C).
- Wan, Tianyi & Fu, Hao & Li, Xiaoshan & Wu, Fan & Luo, Cong & Zhang, Liqi, 2025. "Assessment of decarbonization pathway for Chinese road transport sector based on transportation-energy integration systems framework," Energy, Elsevier, vol. 317(C).
- Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
- Huang, Chengfang & Guo, Jinjun & Zhang, Zhengtao & Li, Ning & Zhu, Anfeng & Liu, Yuan & Chen, Xi & Sun, Benbo, 2025. "Indirect economic benefits of energy consumption changes under China's carbon neutrality goal," Energy, Elsevier, vol. 317(C).
- Rik Heerden & Oreane Y. Edelenbosch & Vassilis Daioglou & Thomas Gallic & Luiz Bernardo Baptista & Alice Bella & Francesco Pietro Colelli & Johannes Emmerling & Panagiotis Fragkos & Robin Hasse & Joha, 2025. "Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050," Nature Energy, Nature, vol. 10(3), pages 380-394, March.
- Zhang, Bin & Xin, Qingyao & Chen, Siyuan & Yang, Zhiying & Wang, Zhaohua, 2024. "Urban spatial structure and commuting-related carbon emissions in China: Do monocentric cities emit more?," Energy Policy, Elsevier, vol. 186(C).
- Qian Cheng & Yongqing Xiong, 2024. "Low‐carbon sustainable development driven by new energy vehicle pilot projects in China: Effects, mechanisms, and spatial spillovers," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 979-1000, February.
- Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).
- Rik van Heerden & Oreane Y Edelenbosch & Vassilis Daioglou & Thomas Le Gallic & Luiz Bernardo Baptista & Alice Di Bella & Francesco Pietro Colelli & Johannes Emmerling & Panagiotis Fragkos & Robin Has, 2025. "Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050," Post-Print hal-04985303, HAL.
- Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Runsen & Hanaoka, Tatsuya & Liu, Jingyu & Li, Zhaoling & Sun, Lu, 2024. "Air pollution reduction co-benefits associated with low-carbon transport initiatives for carbon neutrality in China by 2060," Energy, Elsevier, vol. 313(C).
- Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
- Shuanghui Bao & Osamu Nishiura & Shinichiro Fujimori & Ken Oshiro & Runsen Zhang, 2020. "Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO 2 Emissions in Asia," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
- Zhang, Runsen & Zhang, Junyi, 2021. "Long-term pathways to deep decarbonization of the transport sector in the post-COVID world," Transport Policy, Elsevier, vol. 110(C), pages 28-36.
- Yan, Shiyu & De Bruin, Kelly & Dennehy, Emer & Curtis, John, 2020. "A freight transport demand, energy and emission model with technological choices," Papers WP669, Economic and Social Research Institute (ESRI).
- Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
- Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
- Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
- Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
- Paladugula, Anantha Lakshmi & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Pal, Sarbojit & Clarke, Leon & Evans, Meredydd & Kyle, Page & Koti, Poonam Nagar & Parikh, Kirit & Qamar, Sha, 2018. "A multi-model assessment of energy and emissions for India's transportation sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 10-18.
- Tang, Bao-Jun & Li, Xiao-Yi & Yu, Biying & Wei, Yi-Ming, 2019. "Sustainable development pathway for intercity passenger transport: A case study of China," Applied Energy, Elsevier, vol. 254(C).
- Yan, Shiyu & de Bruin, Kelly & Dennehy, Emer & Curtis, John, 2021. "Climate policies for freight transport: Energy and emission projections through 2050," Transport Policy, Elsevier, vol. 107(C), pages 11-23.
- Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
- Ye, Hui & Wu, Fei & Yan, Tiantian & Li, Zexuan & Zheng, Zhengnan & Zhou, Dequn & Wang, Qunwei, 2024. "Decarbonizing urban passenger transportation: Policy effectiveness and interactions," Energy, Elsevier, vol. 311(C).
- Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
- Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
- Bosetti, Valentina & Longden, Thomas, 2013.
"Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles,"
Energy Policy, Elsevier, vol. 58(C), pages 209-219.
- Valentina Bosetti & Thomas Longden, 2012. "Light Duty Vehicle Transportation and Global Climate Policy: The Importance of Electric Drive Vehicles," Working Papers 2012.11, Fondazione Eni Enrico Mattei.
- Bosetti, Valentina & Longden, Thomas, 2012. "Light Duty Vehicle Transportation and Global Climate Policy: The Importance of Electric Drive Vehicles," Climate Change and Sustainable Development 121948, Fondazione Eni Enrico Mattei (FEEM).
- Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
- Álvarez-Antelo, David & Lauer, Arthur & Capellán-Pérez, Íñigo, 2024. "Exploring the potential of a novel passenger transport model to study the decarbonization of the transport sector," Energy, Elsevier, vol. 305(C).
- Jing Gan & Linheng Li & Qiaojun Xiang & Bin Ran, 2020. "A Prediction Method of GHG Emissions for Urban Road Transportation Planning and Its Applications," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31354-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.