IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics036054422500369x.html
   My bibliography  Save this article

Assessment of decarbonization pathway for Chinese road transport sector based on transportation-energy integration systems framework

Author

Listed:
  • Wan, Tianyi
  • Fu, Hao
  • Li, Xiaoshan
  • Wu, Fan
  • Luo, Cong
  • Zhang, Liqi

Abstract

The road transport sector becomes the most difficult sector to fully decarbonize due to its heavy reliance on oil. It is not clear how to affordably achieve low-carbon transition in China yet. In order to identify the most optimal pathway for emission reduction, a transportation-energy integration systems framework was established to analyze CO2 emission reduction potential and cost-benefit. The results of the case study demonstrate that the main source of carbon emissions are heavy freight truck and light passenger vehicles which accounting for 71.7 % of the total. Implementation of vehicle carbon capture technology and electrification transition can reduce 39.5 % CO2 emissions by 2050. However, rapid electrification of transport has led to a sectoral shift rather than an effective reduction in CO2 emissions. The Avoid-Shift-Improve strategy which exhibits good synergy in technology and policy represents a comprehensive approach to overcome this problem. To achieve the carbon neutrality in road transport of China, the most cost-benefit order of implementation from the beginning to the end are demand-side management, improving the efficiency of internal combustion engines, deployment of carbon capture technology and electrification transition.

Suggested Citation

  • Wan, Tianyi & Fu, Hao & Li, Xiaoshan & Wu, Fan & Luo, Cong & Zhang, Liqi, 2025. "Assessment of decarbonization pathway for Chinese road transport sector based on transportation-energy integration systems framework," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s036054422500369x
    DOI: 10.1016/j.energy.2025.134727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500369X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xiangwen Fu & Jing Cheng & Liqun Peng & Mi Zhou & Dan Tong & Denise L. Mauzerall, 2024. "Co-benefits of transport demand reductions from compact urban development in Chinese cities," Nature Sustainability, Nature, vol. 7(3), pages 294-304, March.
    2. Zheng, Jihu & Zhou, Yan & Yu, Rujie & Zhao, Dongchang & Lu, Zifeng & Zhang, Peng, 2019. "Survival rate of China passenger vehicles: A data-driven approach," Energy Policy, Elsevier, vol. 129(C), pages 587-597.
    3. Hossain, M.S. & Fang, Yan Ru & Ma, Teng & Huang, Chen & Peng, Wei & Urpelainen, Johannes & Hebbale, Chetan & Dai, Hancheng, 2023. "Narrowing fossil fuel consumption in the Indian road transport sector towards reaching carbon neutrality," Energy Policy, Elsevier, vol. 172(C).
    4. Li, Xiang & Yan, Xiaoyu, 2024. "Fast penetration of electric vehicles in China cannot achieve steep cuts in air emissions from road transport without synchronized renewable electricity expansion," Energy, Elsevier, vol. 301(C).
    5. Xi Yang & Chris P. Nielsen & Shaojie Song & Michael B. McElroy, 2022. "Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen," Nature Energy, Nature, vol. 7(10), pages 955-965, October.
    6. Kapustin, Nikita O. & Grushevenko, Dmitry A., 2020. "Long-term electric vehicles outlook and their potential impact on electric grid," Energy Policy, Elsevier, vol. 137(C).
    7. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Zhao, Min & Sun, Tao, 2022. "Dynamic spatial spillover effect of new energy vehicle industry policies on carbon emission of transportation sector in China," Energy Policy, Elsevier, vol. 165(C).
    9. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    10. Lin, Zewei & Wang, Peng & Ren, Songyan & Zhao, Daiqing, 2023. "Economic and environmental impacts of EVs promotion under the 2060 carbon neutrality target—A CGE based study in Shaanxi Province of China," Applied Energy, Elsevier, vol. 332(C).
    11. Shang, Wen-Long & Zhang, Junjie & Wang, Kun & Yang, Hangjun & Ochieng, Washington, 2024. "Can financial subsidy increase electric vehicle (EV) penetration---evidence from a quasi-natural experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    12. Haider, Minza & Davis, Matthew & Kumar, Amit, 2024. "Development of a framework to assess the greenhouse gas mitigation potential from the adoption of low-carbon road vehicles in a hydrocarbon-rich region," Applied Energy, Elsevier, vol. 358(C).
    13. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    14. Wang, Qian & Zhu, Hongtao, 2024. "Combined top-down and bottom-up approach for CO2 emissions estimation in building sector of beijing: Taking new energy vehicles into consideration," Energy, Elsevier, vol. 290(C).
    15. He, Xianya & Lin, Jian & Xu, Jinmei & Huang, Jingzhi & Wu, Nianyuan & Zhang, Yining & Liu, Songling & Jing, Rui & Xie, Shan & Zhao, Yingru, 2023. "Long-term planning of wind and solar power considering the technology readiness level under China's decarbonization strategy," Applied Energy, Elsevier, vol. 348(C).
    16. Sun, Dexi & Xia, Jianjun, 2023. "Research on road transport planning aiming at near zero carbon emissions: Taking Ruicheng County as an example," Energy, Elsevier, vol. 263(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Jinyang & Zhu, Mengze & Wu, Jian & Chen, Xueli & Xu, Junjie & Shen, Zhi-Yang, 2025. "Evaluating the impact of new energy vehicle subsidies on urban carbon emissions: Evidence from 261 Chinese cities," Renewable Energy, Elsevier, vol. 240(C).
    2. Cui, Qi & Li, Xiaofan & Bai, Xiaoxin & He, Ling & Liu, Mengting, 2025. "How the synergy effect between renewable electricity deployment and terminal electrification mitigates transportation sectors' carbon emissions in China?," Transport Policy, Elsevier, vol. 166(C), pages 135-147.
    3. Shang, Wen-Long & Song, Xuewang & Xiang, Qiannian & Chen, Haibo & Elhajj, Mireille & Bi, Huibo & Wang, Kun & Ochieng, Washington, 2025. "The impact of deep reinforcement learning-based traffic signal control on Emission reduction in urban Road networks empowered by cooperative vehicle-infrastructure systems," Applied Energy, Elsevier, vol. 390(C).
    4. Phillip K. Agbesi & Rico Ruffino & Marko Hakovirta, 2023. "The development of sustainable electric vehicle business ecosystems," SN Business & Economics, Springer, vol. 3(8), pages 1-59, August.
    5. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    6. Leal Silva, Jean Felipe & Nogueira, Luiz Augusto Horta & Cantarella, Heitor & Rossetto, Raffaella & Maciel Filho, Rubens & Souza, Glaucia Mendes, 2025. "Meta-data analysis of biofuels in emerging markets of Africa and Asia: Greenhouse gas savings and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    7. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    8. Qianqian Meng & Ziying Jia & Huixue Yang, 2024. "Policy Simulation of the Coordinated Development of Environmental Governance and Urbanization in the Beijing–Tianjin-Hebei Region: A Study Using a Multi-Regional CGE Model," Sustainability, MDPI, vol. 16(23), pages 1-25, November.
    9. Ye, Hui & Wu, Fei & Yan, Tiantian & Li, Zexuan & Zheng, Zhengnan & Zhou, Dequn & Wang, Qunwei, 2024. "Decarbonizing urban passenger transportation: Policy effectiveness and interactions," Energy, Elsevier, vol. 311(C).
    10. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    11. Wang, P.P. & Huang, G.H. & Li, Y.P. & Liu, Y.Y. & Li, Y.F., 2024. "An ecological input-output CGE model for unveiling CO2 emission metabolism under China's dual carbon goals," Applied Energy, Elsevier, vol. 365(C).
    12. Jacobus Nel & Roula Inglesi-Lotz, 2022. "Electric Vehicles Market and Policy Conditions: Identifying South African Policy ``Potholes"," Working Papers 202257, University of Pretoria, Department of Economics.
    13. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    14. Miaomiao Tao & Lim Thye Goh, 2023. "The Road to Improve Energy Efficiency vs. the Role of Corruption - A Dynamic Quantile Exploration," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 4(1), pages 1-5.
    15. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    16. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    17. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    18. Yao, Xusheng & Shao, Zhiqi & Wang, Ze & Zhu, Zhu & Chen, Zuanxu & Wu, Qingyang, 2025. "Policy incentives and market mechanisms dual-driven framework for new energy vehicles promotion," Energy Policy, Elsevier, vol. 199(C).
    19. Gu yanping & Dr Rose Dahlina Bt Rusli, 2024. "Application and Prospect of Ecological Dyeing Technology in Clothing Manufacturing," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(8), pages 2141-2148, August.
    20. Huang, Zhenguang & Li, Chao & Chu, Yican & Gu, Jing & Li, Wenqing & Xie, Jiaxing & Gao, Ge & Wang, Haoyu & Fan, Meiqiang & Yao, Zhendong, 2025. "Potential and challenges for V-based solid solution hydrogen storage alloys," Energy, Elsevier, vol. 316(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s036054422500369x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.