IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923008814.html
   My bibliography  Save this article

Long-term planning of wind and solar power considering the technology readiness level under China's decarbonization strategy

Author

Listed:
  • He, Xianya
  • Lin, Jian
  • Xu, Jinmei
  • Huang, Jingzhi
  • Wu, Nianyuan
  • Zhang, Yining
  • Liu, Songling
  • Jing, Rui
  • Xie, Shan
  • Zhao, Yingru

Abstract

To address climate change, the Chinese government has committed to achieving carbon peaking by 2030. Projecting the wind power and photovoltaic installed capacity is essential for China's low carbon transition as these renewables have been widely recognized as the major energy sources in future. This study proposes a long-term strategic planning approach for wind power and photovoltaic by simulating multiple policies and market scenarios for the national-level energy transitions and incorporating the feedback effects of market development on technology readiness level. The proposed approach simulates the national energy consumption and energy mix under various transition scenarios based on the Long-range Energy Alternatives Planning System (LEAP). The dynamics of market development, technology readiness level, and future renewable costs are further incorporated into a nonlinear optimization model to generate economically optimal planning solutions for wind power and photovoltaic under different policy and market scenarios. Valuable insights are obtained from three perspectives, i.e., (1) the economic and emission reduction co-benefits under different scenarios, (2) the evolution of the Levelized Cost of Energy, and (3) the impact on the transition of power sector. In particular, the simulation and optimization results reveal that appropriate acceleration of wind power and photovoltaic development can promote technology readiness level, reduce overall transition costs, and effectively reduce the peak value of emissions. The maximum peak reduction in carbon dioxide emissions is 16.06%, and the maximum cumulative reduction in carbon dioxide emissions is 14.54%. The total project cost can be reduced by a maximum of 3.23%. Thus, more active supporting policies for renewables can further enhance long-term economic and environmental co-benefits under current conditions.

Suggested Citation

  • He, Xianya & Lin, Jian & Xu, Jinmei & Huang, Jingzhi & Wu, Nianyuan & Zhang, Yining & Liu, Songling & Jing, Rui & Xie, Shan & Zhao, Yingru, 2023. "Long-term planning of wind and solar power considering the technology readiness level under China's decarbonization strategy," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008814
    DOI: 10.1016/j.apenergy.2023.121517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923008814
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Yu, Shiwei & Zheng, Shuhong & Li, Xia & Li, Longxi, 2018. "China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring," Energy Economics, Elsevier, vol. 73(C), pages 91-107.
    3. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    4. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    5. Liu, Jian & Yang, Qingshan & Ou, Suhua & Liu, Jie, 2022. "Factor decomposition and the decoupling effect of carbon emissions in China's manufacturing high-emission subsectors," Energy, Elsevier, vol. 248(C).
    6. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    8. Huang, Ren & Zhang, Sufang & Wang, Peng, 2022. "Key areas and pathways for carbon emissions reduction in Beijing for the “Dual Carbon” targets," Energy Policy, Elsevier, vol. 164(C).
    9. Wang, Yufei & Li, Huimin & Song, Qijiao & Qi, Ye, 2017. "The consequence of energy policies in China: A case study of the iron and steel sector," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 66-73.
    10. Wei, Max & Smith, Sarah Josephine & Sohn, Michael D., 2017. "Non-constant learning rates in retrospective experience curve analyses and their correlation to deployment programs," Energy Policy, Elsevier, vol. 107(C), pages 356-369.
    11. Schäuble, Dominik & Marian, Adela & Cremonese, Lorenzo, 2020. "Conditions for a cost-effective application of smart thermostat systems in residential buildings," Applied Energy, Elsevier, vol. 262(C).
    12. Jing, Rui & Xie, Mei Na & Wang, Feng Xiang & Chen, Long Xiang, 2020. "Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management," Applied Energy, Elsevier, vol. 262(C).
    13. Zhang, Jiawei & Liu, Miaomiao & Bi, Jun, 2022. "Urban greenhouse gas emission peaking paths and embedded health co-benefits: A multicases comparison study in China," Applied Energy, Elsevier, vol. 311(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    2. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    3. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    4. Nemet, Gregory F. & Lu, Jiaqi & Rai, Varun & Rao, Rohan, 2020. "Knowledge spillovers between PV installers can reduce the cost of installing solar PV," Energy Policy, Elsevier, vol. 144(C).
    5. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    6. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
    7. Qingwei Shi & Hong Ren & Weiguang Cai & Jingxin Gao, 2020. "How to Set the Proper CO 2 Reduction Targets for the Provincial Building Sector of China?," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    8. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    9. Zhang, Shufan & Ma, Minda & Li, Kai & Ma, Zhili & Feng, Wei & Cai, Weiguang, 2022. "Historical carbon abatement in the commercial building operation: China versus the US," Energy Economics, Elsevier, vol. 105(C).
    10. Li, Rui & Liu, Qiqi & Cai, Weiguang & Liu, Yuan & Yu, Yanhui & Zhang, Yihao, 2023. "Echelon peaking path of China's provincial building carbon emissions: Considering peak and time constraints," Energy, Elsevier, vol. 271(C).
    11. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    12. Xian’en Wang & Tingyu Hu & Junnian Song & Haiyan Duan, 2022. "Tracking Key Industrial Sectors for CO 2 Mitigation through the Driving Effects: An Attribution Analysis," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    13. Feng Wang & Changhai Gao & Wulin Zhang & Danwen Huang, 2021. "Industrial Structure Optimization and Low-Carbon Transformation of Chinese Industry Based on the Forcing Mechanism of CO 2 Emission Peak Target," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    14. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    15. Yi Zhou & Alun Gu, 2019. "Learning Curve Analysis of Wind Power and Photovoltaics Technology in US: Cost Reduction and the Importance of Research, Development and Demonstration," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    16. Hong, Soonpa & Yang, Taeyong & Chang, Hyun Joon & Hong, Sungjun, 2020. "The effect of switching renewable energy support systems on grid parity for photovoltaics: Analysis using a learning curve model," Energy Policy, Elsevier, vol. 138(C).
    17. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Zhou, Yiqi & Zou, Shan & Duan, Weili & Chen, Yaning & Takara, Kaoru & Di, Yanfeng, 2022. "Analysis of energy carbon emissions from agroecosystems in Tarim River Basin, China: A pathway to achieve carbon neutrality," Applied Energy, Elsevier, vol. 325(C).
    19. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    20. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng & Vaz-Serra, Paulo, 2022. "Economic and environmental impacts of public investment in clean energy RD&D," Energy Policy, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.