IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025431.html
   My bibliography  Save this article

Assessing the implications of RES technology mix on curtailments, storage requirements and system economics

Author

Listed:
  • Psarros, Georgios N.
  • Dratsas, Pantelis A.
  • Chinaris, Periklis P.
  • Papathanassiou, Stavros A.

Abstract

This paper investigates the development of wind and solar photovoltaic (PV) technologies for achieving renewable energy sources (RES) penetration levels of ∼80 %, focusing on renewable curtailment mitigation, system economics, storage needs, and RES investments' financial viability when exposed to market prices. Three growth trajectories are evaluated: prioritizing PV, prioritizing wind farms, and a balanced PV-wind development approach. For each scenario, combinations of batteries and closed-loop pumped-hydro capacities are also assessed to determine the optimal storage configurations that minimize system costs. Analysis reveals that RES curtailments primarily occur during midday peak PV generation, regardless of the level of installed PV capacity. Storage effectively mitigates these curtailments; however, complete elimination would necessitate excessive storage capacities, which are not economically justifiable. Although a wind-dominated renewable mix has the potential to effectively reduce curtailments, a cost-minimization approach identifies a balanced RES development combined with strategically selected storage capacities as the most favorable option. Minor adjustments within the balanced RES development scenario could favor the moderate precedence of PVs against wind installations, yielding similar system costs. Additionally, prioritizing a specific RES technology in the mix cannibalizes its spot market revenue, paving the way for other renewable technologies to harvest boosted income. Nonetheless, not all renewable technologies in the mix can achieve financial viability solely through market revenue. Additional support mechanisms are necessary to incentivize investments in these technologies and facilitate progress towards more ambitious decarbonization objectives.

Suggested Citation

  • Psarros, Georgios N. & Dratsas, Pantelis A. & Chinaris, Periklis P. & Papathanassiou, Stavros A., 2025. "Assessing the implications of RES technology mix on curtailments, storage requirements and system economics," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025431
    DOI: 10.1016/j.apenergy.2024.125159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Henriot, Arthur, 2015. "Economic curtailment of intermittent renewable energy sources," Energy Economics, Elsevier, vol. 49(C), pages 370-379.
    2. Cárdenas, Bruno & Swinfen-Styles, Lawrie & Rouse, James & Hoskin, Adam & Xu, Weiqing & Garvey, S.D., 2021. "Energy storage capacity vs. renewable penetration: A study for the UK," Renewable Energy, Elsevier, vol. 171(C), pages 849-867.
    3. Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei & Xu, Zhao & McCulloch, Malcolm D. & Wong, Kit Po, 2017. "A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 439-451.
    4. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    5. Bechlenberg, Alva & Luning, Egbert A. & Saltık, M. Bahadır & Szirbik, Nick B. & Jayawardhana, Bayu & Vakis, Antonis I., 2024. "Renewable energy system sizing with power generation and storage functions accounting for its optimized activity on multiple electricity markets," Applied Energy, Elsevier, vol. 360(C).
    6. Luburić, Zora & Pandžić, Hrvoje & Plavšić, Tomislav & Teklić, Ljupko & Valentić, Vladimir, 2018. "Role of energy storage in ensuring transmission system adequacy and security," Energy, Elsevier, vol. 156(C), pages 229-239.
    7. Vulic, Natasa & Rüdisüli, Martin & Orehounig, Kristina, 2023. "Evaluating energy flexibility requirements for high shares of variable renewable energy: A heuristic approach," Energy, Elsevier, vol. 270(C).
    8. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    9. Gupta, Ankit & Davis, Matthew & Kumar, Amit, 2021. "An integrated assessment framework for the decarbonization of the electricity generation sector," Applied Energy, Elsevier, vol. 288(C).
    10. Denholm, Paul & Mai, Trieu, 2019. "Timescales of energy storage needed for reducing renewable energy curtailment," Renewable Energy, Elsevier, vol. 130(C), pages 388-399.
    11. Mayyas, Ahmad & Chadly, Assia & Amer, Saed Talib & Azar, Elie, 2022. "Economics of the Li-ion batteries and reversible fuel cells as energy storage systems when coupled with dynamic electricity pricing schemes," Energy, Elsevier, vol. 239(PA).
    12. He, Xianya & Lin, Jian & Xu, Jinmei & Huang, Jingzhi & Wu, Nianyuan & Zhang, Yining & Liu, Songling & Jing, Rui & Xie, Shan & Zhao, Yingru, 2023. "Long-term planning of wind and solar power considering the technology readiness level under China's decarbonization strategy," Applied Energy, Elsevier, vol. 348(C).
    13. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    14. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    15. Jafari, Mehdi & Botterud, Audun & Sakti, Apurba, 2022. "Decarbonizing power systems: A critical review of the role of energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    17. Huber, Matthias & Weissbart, Christoph, 2015. "On the optimal mix of wind and solar generation in the future Chinese power system," Energy, Elsevier, vol. 90(P1), pages 235-243.
    18. Blazquez, Jorge & Nezamuddin, Nora & Zamrik, Tamim, 2018. "Economic policy instruments and market uncertainty: Exploring the impact on renewables adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 224-233.
    19. Gatzert, Nadine & Kosub, Thomas, 2016. "Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 982-998.
    20. Li, Xiao & Liu, Pan & Feng, Maoyuan & Jordaan, Sarah M. & Cheng, Lei & Ming, Bo & Chen, Jie & Xie, Kang & Liu, Weibo, 2024. "Energy transition paradox: Solar and wind growth can hinder decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    21. Villamor, Lila Vázquez & Avagyan, Vitali & Chalmers, Hannah, 2020. "Opportunities for reducing curtailment of wind energy in the future electricity systems: Insights from modelling analysis of Great Britain," Energy, Elsevier, vol. 195(C).
    22. Leonard, Matthew D. & Michaelides, Efstathios E. & Michaelides, Dimitrios N., 2020. "Energy storage needs for the substitution of fossil fuel power plants with renewables," Renewable Energy, Elsevier, vol. 145(C), pages 951-962.
    23. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    24. Qiu, Yang & Cohen, Stuart & Suh, Sangwon, 2022. "Decarbonization scenarios of the U.S. Electricity system and their costs," Applied Energy, Elsevier, vol. 325(C).
    25. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    26. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    27. Hadush, Samson Yemane & Meeus, Leonardo, 2018. "DSO-TSO cooperation issues and solutions for distribution grid congestion management," Energy Policy, Elsevier, vol. 120(C), pages 610-621.
    28. Arteaga, Juan & Zareipour, Hamidreza & Amjady, Nima, 2021. "Energy Storage as a Service: Optimal sizing for Transmission Congestion Relief," Applied Energy, Elsevier, vol. 298(C).
    29. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    30. Nycander, Elis & Söder, Lennart & Olauson, Jon & Eriksson, Robert, 2020. "Curtailment analysis for the Nordic power system considering transmission capacity, inertia limits and generation flexibility," Renewable Energy, Elsevier, vol. 152(C), pages 942-960.
    31. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xian & Wang, Jia-Xing & Cao, Zhe & Shen, Shuo & Meng, Shuo & Fan, Jing-Li, 2021. "What is driving the remarkable decline of wind and solar power curtailment in China? Evidence from China and four typical provinces," Renewable Energy, Elsevier, vol. 174(C), pages 31-42.
    2. Wei, Shuni & Yuan, Peng & Yu, Renjie, 2025. "Can renewable portfolio standard promote renewable energy capacity utilization? Empirical evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    3. Khalili, Siavash & Lopez, Gabriel & Breyer, Christian, 2025. "Role and trends of flexibility options in 100% renewable energy system analyses towards the Power-to-X Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    4. Abdelsalam, Mohamed Y. & Friedrich, Kelton & Mohamed, Saber & Chebeir, Jorge & Lakhian, Vickram & Sullivan, Brendan & Abdalla, Ahmed & Van Ryn, Jessica & Girard, Jeffrey & Lightstone, Marilyn F. & Buc, 2023. "Integrated community energy and harvesting systems: A climate action strategy for cold climates," Applied Energy, Elsevier, vol. 346(C).
    5. Pedro Ferreira Torres & Alex R. A. Manito & Gilberto Figueiredo & Marcelo P. Almeida & José César de Souza Almeida Neto & Renato L. Cavalcante & Caio Cesar Vieira de Freitas Almeida da Silva & Roberto, 2025. "Energy Storage as a Transmission Asset—Assessing the Multiple Uses of a Utility-Scale Battery Energy Storage System in Brazil," Energies, MDPI, vol. 18(4), pages 1-24, February.
    6. Andreij Selänniemi & Magnus Hellström & Margareta Björklund-Sänkiaho, 2024. "Long-Duration Energy Storage—A Literature Review on the Link between Variable Renewable Energy Penetration and Market Creation," Energies, MDPI, vol. 17(15), pages 1-30, July.
    7. Laugs, Gideon A.H. & Benders, René M.J. & Moll, Henri C., 2020. "Balancing responsibilities: Effects of growth of variable renewable energy, storage, and undue grid interaction," Energy Policy, Elsevier, vol. 139(C).
    8. Monaco, Roberto & Bergaentzlé, Claire & Leiva Vilaplana, Jose Angel & Ackom, Emmanuel & Nielsen, Per Sieverts, 2024. "Digitalization of power distribution grids: Barrier analysis, ranking and policy recommendations," Energy Policy, Elsevier, vol. 188(C).
    9. Yasuda, Yoh & Bird, Lori & Carlini, Enrico Maria & Eriksen, Peter Børre & Estanqueiro, Ana & Flynn, Damian & Fraile, Daniel & Gómez Lázaro, Emilio & Martín-Martínez, Sergio & Hayashi, Daisuke & Holtti, 2022. "C-E (curtailment – Energy share) map: An objective and quantitative measure to evaluate wind and solar curtailment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Park, Sung-Won & Cho, Kyu-Sang & Hoefter, Gregor & Son, Sung-Yong, 2022. "Electric vehicle charging management using location-based incentives for reducing renewable energy curtailment considering the distribution system," Applied Energy, Elsevier, vol. 305(C).
    11. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    12. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    13. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    14. Theo Dronne & Fabien Roques & Marcelo Saguan, 2021. "Local Flexibility Markets for Distribution Network Congestion-Management in Center-Western Europe: Which Design for Which Needs?," Energies, MDPI, vol. 14(14), pages 1-18, July.
    15. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    16. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    17. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    18. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    19. Bistline, John E.T. & Young, David T., 2020. "Emissions impacts of future battery storage deployment on regional power systems," Applied Energy, Elsevier, vol. 264(C).
    20. Villamor, Lila Vázquez & Avagyan, Vitali & Chalmers, Hannah, 2020. "Opportunities for reducing curtailment of wind energy in the future electricity systems: Insights from modelling analysis of Great Britain," Energy, Elsevier, vol. 195(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.