IDEAS home Printed from
   My bibliography  Save this article

Long-term electric vehicles outlook and their potential impact on electric grid


  • Kapustin, Nikita O.
  • Grushevenko, Dmitry A.


The last decade was marked by a new boom of popularity for electric transport. Massive government support helped increase EV annual sales from just 2 to over 753 thousands worldwide over the ten years. Many countries and private enterprises hold extremely high hopes for electric transport, predicting the imminent abandonment of the internal combustion engines (ICE). Our research shows that in 2018 EVs are yet still unable to compete on equal footing with conventional cars. However, should government and auto manufacturers maintain the current pace of development, true competitiveness between ICE and electric vehicles can be achieved by 2035 even in the low-oil-price environment.

Suggested Citation

  • Kapustin, Nikita O. & Grushevenko, Dmitry A., 2020. "Long-term electric vehicles outlook and their potential impact on electric grid," Energy Policy, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306901
    DOI: 10.1016/j.enpol.2019.111103

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jian Chai & Shubin Wang & Shouyang Wang & Ju’e Guo, 2012. "Demand Forecast of Petroleum Product Consumption in the Chinese Transportation Industry," Energies, MDPI, vol. 5(3), pages 1-22, March.
    2. Robinson, A.P. & Blythe, P.T. & Bell, M.C. & Hübner, Y. & Hill, G.A., 2013. "Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips," Energy Policy, Elsevier, vol. 61(C), pages 337-348.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    2. Chengxiang Zhuge & Chunfu Shao & Xia Li, 2019. "Empirical Analysis of Parking Behaviour of Conventional and Electric Vehicles for Parking Modelling: A Case Study of Beijing, China," Energies, MDPI, vol. 12(16), pages 1-21, August.
    3. Bunce, Louise & Harris, Margaret & Burgess, Mark, 2014. "Charge up then charge out? Drivers’ perceptions and experiences of electric vehicles in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 278-287.
    4. Mona Kabus & Lars Nolting & Benedict J. Mortimer & Jan C. Koj & Wilhelm Kuckshinrichs & Rik W. De Doncker & Aaron Praktiknjo, 2020. "Environmental Impacts of Charging Concepts for Battery Electric Vehicles: A Comparison of On-Board and Off-Board Charging Systems Based on a Life Cycle Assessment," Energies, MDPI, vol. 13(24), pages 1-31, December.
    5. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    6. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    7. Good, Clara & Shepero, Mahmoud & Munkhammar, Joakim & Boström, Tobias, 2019. "Scenario-based modelling of the potential for solar energy charging of electric vehicles in two Scandinavian cities," Energy, Elsevier, vol. 168(C), pages 111-125.
    8. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    9. Keller, Victor & English, Jeffrey & Fernandez, Julian & Wade, Cameron & Fowler, McKenzie & Scholtysik, Sven & Palmer-Wilson, Kevin & Donald, James & Robertson, Bryson & Wild, Peter & Crawford, Curran , 2019. "Electrification of road transportation with utility controlled charging: A case study for British Columbia with a 93% renewable electricity target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    11. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2017. "When do you charge your electric vehicle? A stated adaptation approach," Energy Policy, Elsevier, vol. 108(C), pages 565-573.
    12. Malik, Afia, 2018. "Fuel Demand in Pakistan's TRansport Sector," MPRA Paper 103455, University Library of Munich, Germany.
    13. Sovacool, Benjamin K. & Kivimaa, Paula & Hielscher, Sabine & Jenkins, Kirsten, 2017. "Vulnerability and resistance in the United Kingdom's smart meter transition," Energy Policy, Elsevier, vol. 109(C), pages 767-781.
    14. Tehreem Fatima & Enjun Xia & Muhammad Ahad, 2019. "Oil demand forecasting for China: a fresh evidence from structural time series analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1205-1224, June.
    15. García-Afonso, Óscar & González-Díaz, Benjamín, 2023. "Effectiveness of zero tailpipe vehicles to reduce CO2 emissions in isolated power systems, a realistic perspective: Tenerife Island test case," Energy, Elsevier, vol. 273(C).
    16. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    17. Wang, Wanying & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Li, Xuefang, 2020. "An empirical evaluation of different usage pattern between car-sharing battery electric vehicles and private ones," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 115-129.
    18. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    19. Kacperski, Celina & Ulloa, Roberto & Klingert, Sonja & Kirpes, Benedikt & Kutzner, Florian, 2022. "Impact of incentives for greener battery electric vehicle charging – A field experiment," Energy Policy, Elsevier, vol. 161(C).
    20. Zhao, Chunfu & Chen, Bin, 2014. "China’s oil security from the supply chain perspective: A review," Applied Energy, Elsevier, vol. 136(C), pages 269-279.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.