IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v129y2019icp587-597.html
   My bibliography  Save this article

Survival rate of China passenger vehicles: A data-driven approach

Author

Listed:
  • Zheng, Jihu
  • Zhou, Yan
  • Yu, Rujie
  • Zhao, Dongchang
  • Lu, Zifeng
  • Zhang, Peng

Abstract

With the rapid growth of passenger vehicle stock, China faces serious environmental and energy security problems. To reduce and remove low-efficiency vehicles on the road in an effort to ensure vehicle safety and fuel efficiency, China updated its compulsory scrappage standard for motor vehicles in 2013. The new standard increases the scrappage VKT (vehicle kilometers traveled) limit from 500,000 km to 600,000 km and removes the upper vehicle age limit of 15 years for passenger vehicles. 2012–2016 National registration data and 1980–2016 annual sales data were used to examine the on-road vehicle age distribution and survival rate of China passenger vehicle. The results showed that the median vehicle lifetime (age at 50% survival rate) had increased by 2.4 years—from 10.5 years in 2012 to 12.9 years in 2016. Vehicle survival rate by vehicle purpose and vehicle type shows that compared to cars and cross passenger cars (mainly minibuses, which are variants of minivans with displacement no more than 1.0L), SUVs and MPVs have higher survival rates. The overall increase in vehicle lifetime and survival rate from 2012 to 2016 will increase total fuel consumption by 2.5%–3.7% in China.

Suggested Citation

  • Zheng, Jihu & Zhou, Yan & Yu, Rujie & Zhao, Dongchang & Lu, Zifeng & Zhang, Peng, 2019. "Survival rate of China passenger vehicles: A data-driven approach," Energy Policy, Elsevier, vol. 129(C), pages 587-597.
  • Handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:587-597
    DOI: 10.1016/j.enpol.2019.02.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151930120X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.02.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alan Greenspan & Darrel Cohen, 1999. "Motor Vehicle Stocks, Scrappage, And Sales," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 369-383, August.
    2. Tian Wu & Hongmei Zhao & Xunmin Ou, 2014. "Vehicle Ownership Analysis Based on GDP per Capita in China: 1963–2050," Sustainability, MDPI, vol. 6(8), pages 1-23, August.
    3. Christopher R. Knittel, 2011. "Automobiles on Steroids: Product Attribute Trade-Offs and Technological Progress in the Automobile Sector," American Economic Review, American Economic Association, vol. 101(7), pages 3368-3399, December.
    4. Bert Van Wee & Gerard De Jong & Hans Nijland, 2011. "Accelerating Car Scrappage: A Review of Research into the Environmental Impacts," Transport Reviews, Taylor & Francis Journals, vol. 31(5), pages 549-569.
    5. Huo, Hong & Zhang, Qiang & He, Kebin & Yao, Zhiliang & Wang, Michael, 2012. "Vehicle-use intensity in China: Current status and future trend," Energy Policy, Elsevier, vol. 43(C), pages 6-16.
    6. repec:cdl:itsdav:qt2nt1r1x1 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhanji Zheng & Qiaojun Xiang & Xin Gu & Yongfeng Ma & Kangkang Zheng, 2020. "The Influence of Individual Differences on Diverging Behavior at the Weaving Sections of an Urban Expressway," IJERPH, MDPI, vol. 18(1), pages 1-17, December.
    2. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    3. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    4. Jihu Zheng & Rujie Yu & Yong Liu & Yuhong Zou & Dongchang Zhao, 2019. "The Technological Progress of the Fuel Consumption Rate for Passenger Vehicles in China: 2009–2016," Energies, MDPI, vol. 12(12), pages 1-14, June.
    5. Zhan, Weipeng & Wang, Zhenpo & Deng, Junjun & Liu, Peng & Cui, Dingsong, 2024. "Integrating system dynamics and agent-based modeling: A data-driven framework for predicting electric vehicle market penetration and GHG emissions reduction under various incentives scenarios," Applied Energy, Elsevier, vol. 372(C).
    6. Wan, Tianyi & Fu, Hao & Li, Xiaoshan & Wu, Fan & Luo, Cong & Zhang, Liqi, 2025. "Assessment of decarbonization pathway for Chinese road transport sector based on transportation-energy integration systems framework," Energy, Elsevier, vol. 317(C).
    7. Li, Shanjun & Wang, Binglin & Zhou, Hui, 2024. "Decarbonizing passenger transportation in developing countries: Lessons and perspectives1," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    8. Xu Hao & Yan Zhou & Hewu Wang & Minggao Ouyang, 2020. "Plug-in electric vehicles in China and the USA: a technology and market comparison," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 329-353, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ufuk Demiroglu & Caglar Yunculer, 2016. "Estimating light-vehicle sales in Turkey," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 16(3), pages 93-108.
    2. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    3. Javier Asensio & Anna Matas & Josep-Lluís Raymond, 2025. "Policies to reduce cars’ emissions between the opposing forces of technological change and demand for characteristics," Working Papers wpdea2502, Department of Applied Economics at Universitat Autonoma of Barcelona.
    4. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    5. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    6. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    7. Caballero, Ricardo J., 1999. "Aggregate investment," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 12, pages 813-862, Elsevier.
    8. Michel Freyssenet & Bruno Jetin, 2019. "The deregulation of employment and finance: the Big Three in crisis," Working Papers halshs-02020051, HAL.
    9. Rik Rozendaal & Herman Vollebergh, 2025. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 12(3), pages 565-598.
    10. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2019. "Air Pollutant Emissions from Vehicles and Their Abatement Scenarios: A Case Study of Chengdu-Chongqing Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    11. Huang, Robert & Kahn, Matthew E., 2024. "An economic analysis of United States public transit carbon emissions dynamics," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    12. Yu, Rujie & Ren, Huanhuan & Liu, Yong & Yu, Biying, 2021. "Gap between on-road and official fuel efficiency of passenger vehicles in China," Energy Policy, Elsevier, vol. 152(C).
    13. Yujie Lin & Joshua Linn, 2023. "Environmental Regulation and Product Attributes: The Case of European Passenger Vehicle Greenhouse Gas Emissions Standards," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 1-32.
    14. Mathias Reynaert, 2021. "Abatement Strategies and the Cost of Environmental Regulation: Emission Standards on the European Car Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 454-488.
    15. Sallee, James M. & Slemrod, Joel, 2012. "Car notches: Strategic automaker responses to fuel economy policy," Journal of Public Economics, Elsevier, vol. 96(11), pages 981-999.
    16. Díaz Antonia & Puch Luis A., 2019. "Investment, technological progress and energy efficiency," The B.E. Journal of Macroeconomics, De Gruyter, vol. 19(2), pages 1-28, June.
    17. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
    19. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    20. Yang, Hongtai & Zhai, Guocong & Liu, Xiaohan & Yang, Linchuan & Liu, Yugang & Yuan, Quan, 2022. "Determinants of city-level private car ownership: Effect of vehicle regulation policies and the relative price," Transport Policy, Elsevier, vol. 115(C), pages 40-48.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:587-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.