IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6503-d288354.html
   My bibliography  Save this article

Air Pollutant Emissions from Vehicles and Their Abatement Scenarios: A Case Study of Chengdu-Chongqing Urban Agglomeration, China

Author

Listed:
  • Xiaowei Song

    (College of Resources and Environment, Shanxi University of Finance & Economics, Taiyuan 030006, China
    State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China)

  • Yongpei Hao

    (College of Resources and Environment, Shanxi University of Finance & Economics, Taiyuan 030006, China
    Ministry of Education Key Laboratory for Coastal and Island Development, School of Geographic & Oceanographic Sciences, Nanjing University, Nanjing 210046, China)

  • Xiaodong Zhu

    (State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China)

Abstract

Vehicular emissions have become one of the important sources of air pollution, and their effective control is essential to protect the environment. The Chengdu-Chongqing Urban Agglomeration (CCUA), a less developed area located in the southwest of China with higher vehicle population and special topographic features, was selected as the research area. The aims of this study were to establish multi-year vehicular emission inventories for ten important air pollutants in this area and to analyze emission control policy scenarios based on the inventories. The results showed that the ten vehicular pollutant emissions had differences during the past decade, and CO 2 and NH 3 increased markedly between 1999 and 2015. Chengdu and Chongqing were the dominant contributors of vehicular emissions in the CCUA. Eight scenarios based on these inventories were designed and the alternative energy replacement scenario was studied from the life-cycle perspective. Compared with the business as usual scenario, elimination of substandard vehicles scenario is the most effective policy to control NO x , PM 2.5 , PM 10 , and CH 4 emissions; the radical alternative energy replacement scenario could decrease the vehicular NMVOC, CO 2 , N 2 O, and NH 3 emissions; the elimination of motorcycles scenario could decrease the vehicular CO emissions; and the raising fuel standards scenario could reduce vehicular SO 2 emissions significantly (by 94.81%). The radical integrated scenario (combining all of the reduction control measures mentioned above) would achieve the maximum emission reduction of vehicular pollutants CO, NMVOC, NO x , PM 2.5 , PM 10 , CO 2 , N 2 O, and NH 3 compared with any scenario alone.

Suggested Citation

  • Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2019. "Air Pollutant Emissions from Vehicles and Their Abatement Scenarios: A Case Study of Chengdu-Chongqing Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6503-:d:288354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lumbreras, J. & Valdés, M. & Borge, R. & Rodriguez, M.E., 2008. "Assessment of vehicle emissions projections in Madrid (Spain) from 2004 to 2012 considering several control strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 646-658, May.
    2. Dargay, Joyce & Gately, Dermot, 1997. "Vehicle ownership to 2015: Implications for energy use and emissions," Energy Policy, Elsevier, vol. 25(14-15), pages 1121-1127, December.
    3. Huo, Hong & Zhang, Qiang & He, Kebin & Yao, Zhiliang & Wang, Michael, 2012. "Vehicle-use intensity in China: Current status and future trend," Energy Policy, Elsevier, vol. 43(C), pages 6-16.
    4. Caraiani, Chirața & Lungu, Camelia I. & Dascălu, Cornelia, 2015. "Energy consumption and GDP causality: A three-step analysis for emerging European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 198-210.
    5. Chen, Wenying & Xu, Ruina, 2010. "Clean coal technology development in China," Energy Policy, Elsevier, vol. 38(5), pages 2123-2130, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sicheng Wang & Pingjun Sun & Feng Sun & Shengnan Jiang & Zhaomin Zhang & Guoen Wei, 2021. "The Direct and Spillover Effect of Multi-Dimensional Urbanization on PM 2.5 Concentrations: A Case Study from the Chengdu-Chongqing Urban Agglomeration in China," IJERPH, MDPI, vol. 18(20), pages 1-19, October.
    2. Xiao, Rui & Yu, Xiaoyu & Xiang, Ting & Zhang, Zhonghao & Wang, Xue & Wu, Jianguo, 2021. "Exploring the coordination between physical space expansion and social space growth of China’s urban agglomerations based on hierarchical analysis," Land Use Policy, Elsevier, vol. 109(C).
    3. Xiaowei Song & Yongpei Hao, 2021. "Research on the Vehicle Emission Characteristics and Its Prevention and Control Strategy in the Central Plains Urban Agglomeration, China," Sustainability, MDPI, vol. 13(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Song & Yongpei Hao, 2019. "Vehicular Emission Inventory and Reduction Scenario Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 16(23), pages 1-21, November.
    2. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
    3. Ding, Yanjun & Shen, Wei & Yang, Shuhong & Han, Weijian & Chai, Qinhu, 2013. "Car dieselization: A solution to China's energy security?," Energy Policy, Elsevier, vol. 62(C), pages 540-549.
    4. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    5. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    6. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    7. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    8. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    9. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
    11. Pradhan, Rudra P. & Arvin, Mak B. & Nair, Mahendhiran & Bennett, Sara E. & Hall, John H., 2018. "The dynamics between energy consumption patterns, financial sector development and economic growth in Financial Action Task Force (FATF) countries," Energy, Elsevier, vol. 159(C), pages 42-53.
    12. Enci Wang & Jianyun Nie & Hong Zhan, 2022. "The Impact of Carbon Emissions Trading on the Profitability and Debt Burden of Listed Companies," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    13. Hoffmann, Bettina Susanne & Szklo, Alexandre, 2011. "Integrated gasification combined cycle and carbon capture: A risky option to mitigate CO2 emissions of coal-fired power plants," Applied Energy, Elsevier, vol. 88(11), pages 3917-3929.
    14. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    15. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).
    16. Laëtitia Guilhot, 2022. "An analysis of China's energy policy from 1981 to 2020: Transitioning towards to a diversified and low-carbon energy system," Post-Print halshs-03548757, HAL.
    17. B. Ajay Krishna, 2025. "Medium-term projections of vehicle ownership, energy demand and vehicular emissions from private road transport in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(6), pages 13839-13867, June.
    18. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    19. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    20. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6503-:d:288354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.