IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10213-d1526701.html
   My bibliography  Save this article

Policy Simulation of the Coordinated Development of Environmental Governance and Urbanization in the Beijing–Tianjin-Hebei Region: A Study Using a Multi-Regional CGE Model

Author

Listed:
  • Qianqian Meng

    (School of Economics and Management, Zhengzhou College of Finance and Economics, Zhengzhou 450044, China)

  • Ziying Jia

    (School of Economics and Management, Beijing Institute of Petrochemical Technology, Beijing 102617, China)

  • Huixue Yang

    (School of Economics and Management, Beijing Institute of Petrochemical Technology, Beijing 102617, China)

Abstract

Ecological environmental governance is not only a crucial aspect of the urbanization process, but also a key factor for achieving coordinated development between regional economies and the environment. This study utilizes a multi-regional Computable General Equilibrium (CGE) model to simulate the impact of varying degrees of environmental governance on urbanization in the Beijing–Tianjin–Hebei region. The results indicate that ecological environmental governance may exert certain negative effects on urbanization processes, such as GDP, household income, and industrial output; however, it also helps to reduce environmental pollution to some extent. From the different scenarios examined, we observed that both fully local environmental governance and proportional environmental governance result in impacts on urbanization development in Beijing, Tianjin, and Hebei. However, significant differences are evident among the three regions. The effects of ecological environmental governance on urbanization are the least pronounced in Beijing, followed by Tianjin, while Hebei experiences far greater disruptions, with economic declines exceeding 7%, significantly surpassing its capacity to cope. Based on these findings, this paper proposes several policy recommendations, including the necessity of differentiated intensities for ecological environmental governance, a gradual expansion of the governance scope, and the implementation of a diverse combination of policies for air pollution control and emissions reduction.

Suggested Citation

  • Qianqian Meng & Ziying Jia & Huixue Yang, 2024. "Policy Simulation of the Coordinated Development of Environmental Governance and Urbanization in the Beijing–Tianjin-Hebei Region: A Study Using a Multi-Regional CGE Model," Sustainability, MDPI, vol. 16(23), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10213-:d:1526701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xueyang & Sun, Xiumei & Ahmad, Mahmood & Chen, Jiawei, 2024. "Energy transition, ecological governance, globalization, and environmental sustainability: Insights from the top ten emitting countries," Energy, Elsevier, vol. 292(C).
    2. Li, Na & Zhang, Xiaoling & Shi, Minjun & Hewings, Geoffrey J.D., 2019. "Does China's air pollution abatement policy matter? An assessment of the Beijing-Tianjin-Hebei region based on a multi-regional CGE model," Energy Policy, Elsevier, vol. 127(C), pages 213-227.
    3. Lin, Zewei & Wang, Peng & Ren, Songyan & Zhao, Daiqing, 2023. "Economic and environmental impacts of EVs promotion under the 2060 carbon neutrality target—A CGE based study in Shaanxi Province of China," Applied Energy, Elsevier, vol. 332(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, P.P. & Huang, G.H. & Li, Y.P. & Liu, Y.Y. & Li, Y.F., 2024. "An ecological input-output CGE model for unveiling CO2 emission metabolism under China's dual carbon goals," Applied Energy, Elsevier, vol. 365(C).
    2. Wan, Tianyi & Fu, Hao & Li, Xiaoshan & Wu, Fan & Luo, Cong & Zhang, Liqi, 2025. "Assessment of decarbonization pathway for Chinese road transport sector based on transportation-energy integration systems framework," Energy, Elsevier, vol. 317(C).
    3. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    4. Feng, Tong & Sun, Yuechi & Shi, Yating & Ma, Jie & Feng, Chunmei & Chen, Zhenni, 2024. "Air pollution control policies and impacts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Cui, Qi & Li, Xiaofan & Bai, Xiaoxin & He, Ling & Liu, Mengting, 2025. "How the synergy effect between renewable electricity deployment and terminal electrification mitigates transportation sectors' carbon emissions in China?," Transport Policy, Elsevier, vol. 166(C), pages 135-147.
    6. Huawei Yang & Pan Zhang & Chenxing Zhang & Peiwen Zhang & Xiaoyan Jia, 2024. "A Study on CO₂ Emission Reduction Strategies of Coal-Fired Power Plants Based on CCUS-ECBM Source-Sink Matching," Energies, MDPI, vol. 17(23), pages 1-14, November.
    7. Zhang, Jinzhu & Liu, Yu & Zhou, Meifang & Chen, Boyang & Liu, Yawen & Cheng, Baodong & Xue, Jinjun & Zhang, Wei, 2022. "Regulatory effect of improving environmental information disclosure under environmental tax in China: From the perspectives of temporal and industrial heterogeneity," Energy Policy, Elsevier, vol. 164(C).
    8. Yukun Chang & Tong Zou & Pibin Guo, 2024. "Quantitative Evaluation of China’s Energy Transition Policy Since the 14th Five-Year Plan, Based on the MLP-PMC Model," Energies, MDPI, vol. 17(23), pages 1-19, November.
    9. Xuan Yang & Yue Wang & Di Chen & Xue Tan & Xue Tian & Lei Shi, 2021. "Does the “Blue Sky Defense War Policy” Paint the Sky Blue?—A Case Study of Beijing–Tianjin–Hebei Region, China," IJERPH, MDPI, vol. 18(23), pages 1-25, November.
    10. Mubasher Zaman & Muhammad Sheraz & Quande Qin & Muhammad Zubair Mumtaz, 2025. "Pursuing the Roadmaps to SDG 13: How Climate Change Technology Moderates the nexus Between Digital Finance and Environmental Sustainability," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(4), pages 5470-5486, August.
    11. Huo, Tengfei & Cong, Xiaobo & Cheng, Cong & Cai, Weiguang & Zuo, Jian, 2023. "What is the driving mechanism for the carbon emissions in the building sector? An integrated DEMATEL-ISM model," Energy, Elsevier, vol. 274(C).
    12. Qiang Wang & Liying Yu & Yueling Yang & Haoran Zhao & Yanqing Song & Wenhao Song & Jinmeng Liu, 2022. "Let the Farmers Embrace “Carbon Neutrality”: Taking the Centralized Biogas as an Example," IJERPH, MDPI, vol. 19(15), pages 1-13, August.
    13. Osama Ali Mohamed Elkebti & Wagdi M. S. Khalifa, 2025. "Assessing the Saudi and Middle East Green Initiatives: The Role of Environmental Governance, Renewable Energy Transition, and Innovation in Achieving a Regional Green Future," Sustainability, MDPI, vol. 17(12), pages 1-22, June.
    14. Gao, Zhiyuan & Zhao, Ying & Li, Lianqing & Hao, Yu, 2024. "Economic effects of sustainable energy technology progress under carbon reduction targets: An analysis based on a dynamic multi-regional CGE model," Applied Energy, Elsevier, vol. 363(C).
    15. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    16. Xu, Bing & Lin, Weiran & Taqi, Syed Ali, 2020. "The impact of wind and non-wind factors on PM2.5 levels," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    17. Li, Xinheng & Zhong, Yixuan & Fu, Tao, 2024. "Financial support from children and older household cooking energy use in rural China," Energy, Elsevier, vol. 313(C).
    18. Jing Shao & Nan Xiang & Yutong Zhang & Xiang Li & Guihua Liang, 2021. "Dynamic Simulation of Integrated Cleaner Production Strategies towards High Quality Development in a Heavily Air-Polluted City in China," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    19. Jianhong Hao & Ting Huang & Qiuming Xu & Yi Sun, 2023. "Robust Optimal Scheduling of Microgrid with Electric Vehicles Based on Stackelberg Game," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
    20. Xiaoyao Xie & Yuhong Wang, 2018. "Evaluating the Efficacy of Government Spending on Air Pollution Control: A Case Study from Beijing," IJERPH, MDPI, vol. 16(1), pages 1-15, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10213-:d:1526701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.