IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v139y2020ics0301421520300550.html
   My bibliography  Save this article

Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method

Author

Listed:
  • Wu, Zhaoyuan
  • Zhou, Ming
  • Zhang, Ting
  • Li, Gengyin
  • Zhang, Yan
  • Liu, Xiaojuan

Abstract

Constructing spot markets is the core objective of the new round of electricity market reform kicked off in 2015 in China. A balancing market, as a critical part of a spot market, is an institutional arrangement that deals with balancing electricity demand and supply. Imbalance settlement provides a mechanism for settling the inevitable discrepancies between contractual agreements and physical delivery. Large proportions of long-term non-financially contracted electricity and a high share of renewable generation represent specific market situations in China and make balancing market operation and relevant imbalance settlement more difficult. This paper aims to investigate the effect of imbalance settlement design and exploit an effective evaluation method. An investigation model combining the methods of agent-based modelling (ABM) and multiple criteria decision analysis (MCDA) is proposed to search for the optimal design elements for China's imbalance settlement. Different tolerance margins, Programme Time Units (PTUs) and imbalance pricing mechanisms in imbalance settlement design are analysed. The impacts of imbalance settlement on the behaviour of market participants and overall market are revealed. Finally, corresponding policy implications for imbalance settlement in China's balancing market are put forward. The proposed model also offers a tool for evaluating other design elements in a balancing market.

Suggested Citation

  • Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:enepol:v:139:y:2020:i:c:s0301421520300550
    DOI: 10.1016/j.enpol.2020.111297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520300550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stavrakas, Vassilis & Papadelis, Sotiris & Flamos, Alexandros, 2019. "An agent-based model to simulate technology adoption quantifying behavioural uncertainty of consumers," Applied Energy, Elsevier, vol. 255(C).
    2. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    3. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
    4. De Vos, Kristof & Driesen, Johan & Belmans, Ronnie, 2011. "Assessment of imbalance settlement exemptions for offshore wind power generation in Belgium," Energy Policy, Elsevier, vol. 39(3), pages 1486-1494, March.
    5. Wang, Jidong & Wu, Jiahui & Che, Yanbo, 2019. "Agent and system dynamics-based hybrid modeling and simulation for multilateral bidding in electricity market," Energy, Elsevier, vol. 180(C), pages 444-456.
    6. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    7. Cheng, Chuntian & Chen, Fu & Li, Gang & Ristić, Bora & Mirchi, Ali & Qiyu, Tu & Madani, Kaveh, 2018. "Reform and renewables in China: The architecture of Yunnan's hydropower dominated electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 682-693.
    8. Li, Na & Zhang, Xiaoling & Shi, Minjun & Hewings, Geoffrey J.D., 2019. "Does China's air pollution abatement policy matter? An assessment of the Beijing-Tianjin-Hebei region based on a multi-regional CGE model," Energy Policy, Elsevier, vol. 127(C), pages 213-227.
    9. Silvano Martello, 2015. "Decision Making under Uncertainty in Electricity Markets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(1), pages 174-174, January.
    10. Aliabadi, Danial Esmaeili & Kaya, Murat & Şahin, Güvenç, 2017. "An agent-based simulation of power generation company behavior in electricity markets under different market-clearing mechanisms," Energy Policy, Elsevier, vol. 100(C), pages 191-205.
    11. Christopher M. Anderson & Colin F. Camerer, 2000. "Experience-weighted attraction learning in sender-receiver signaling games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 16(3), pages 689-718.
    12. Xu, Shaofeng & Chen, Wenying, 2006. "The reform of electricity power sector in the PR of China," Energy Policy, Elsevier, vol. 34(16), pages 2455-2465, November.
    13. van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2016. "The electricity balancing market: Exploring the design challenge," Utilities Policy, Elsevier, vol. 43(PB), pages 186-194.
    14. Gupta, Monika & Bandyopadhyay, Kaushik Ranjan & Singh, Sanjay K., 2019. "Measuring effectiveness of carbon tax on Indian road passenger transport: A system dynamics approach," Energy Economics, Elsevier, vol. 81(C), pages 341-354.
    15. Veit, Daniel J. & Weidlich, Anke & Krafft, Jacob A., 2009. "An agent-based analysis of the German electricity market with transmission capacity constraints," Energy Policy, Elsevier, vol. 37(10), pages 4132-4144, October.
    16. MacGill, Iain, 2010. "Electricity market design for facilitating the integration of wind energy: Experience and prospects with the Australian National Electricity Market," Energy Policy, Elsevier, vol. 38(7), pages 3180-3191, July.
    17. Spiros Mouzakitis & George Karamolegkos & Emmanouil Ntanos & John Psarras, 2013. "A Fuzzy Multi-criteria Outranking Approach in Support of Business Angels’ Decision-Analysis Process for the Assessment of Companies as Investment Opportunities," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 274-283, July.
    18. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    19. Mastropietro, Paolo & Herrero, Ignacio & Rodilla, Pablo & Batlle, Carlos, 2016. "A model-based analysis on the impact of explicit penalty schemes in capacity mechanisms," Applied Energy, Elsevier, vol. 168(C), pages 406-417.
    20. van der Veen, Reinier A.C. & Abbasy, Alireza & Hakvoort, Rudi A., 2012. "Agent-based analysis of the impact of the imbalance pricing mechanism on market behavior in electricity balancing markets," Energy Economics, Elsevier, vol. 34(4), pages 874-881.
    21. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2016. "GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain," Applied Energy, Elsevier, vol. 171(C), pages 86-102.
    22. Bunn, Derek W. & Day, Christopher J., 2009. "Computational modelling of price formation in the electricity pool of England and Wales," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 363-376, February.
    23. Liu, Shuangquan & Yang, Qiang & Cai, Huaxiang & Yan, Minghui & Zhang, Maolin & Wu, Dianning & Xie, Mengfei, 2019. "Market reform of Yunnan electricity in southwestern China: Practice, challenges and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    24. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems," Applied Energy, Elsevier, vol. 107(C), pages 412-425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatras, Nicolas & Ma, Zheng & Duan, Hongbo & Jørgensen, Bo Nørregaard, 2022. "A systematic review of electricity market liberalisation and its alignment with industrial consumer participation: A comparison between the Nordics and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Wang, Yaxian & Zhao, Zhenli & Baležentis, Tomas, 2023. "Benefit distribution in shared private charging pile projects based on modified Shapley value," Energy, Elsevier, vol. 263(PB).
    3. Liu, Tingting & Xu, Jiuping, 2021. "Equilibrium strategy based policy shifts towards the integration of wind power in spot electricity markets: A perspective from China," Energy Policy, Elsevier, vol. 157(C).
    4. Guo, Hongye & Davidson, Michael R. & Chen, Qixin & Zhang, Da & Jiang, Nan & Xia, Qing & Kang, Chongqing & Zhang, Xiliang, 2020. "Power market reform in China: Motivations, progress, and recommendations," Energy Policy, Elsevier, vol. 145(C).
    5. Heeseung Moon & Dongsu Lee & Jeongmin Han & Yongtae Yoon & Seungwan Kim, 2021. "Impact of Imbalance Pricing on Variable Renewable Energies with Different Prediction Accuracies: A Korean Case," Energies, MDPI, vol. 14(13), pages 1-19, July.
    6. Sinan Deng & John Inekwe & Vladimir Smirnov & Andrew Wait & Chao Wang, 2023. "Machine Learning and Deep Learning Forecasts of Electricity Imbalance Prices," Working Papers 2023-03, University of Sydney, School of Economics.
    7. Wu, Zhaoyuan & Zhou, Ming & Zhang, Zhi & Zhao, Huiru & Wang, Jianxiao & Xu, Jiayu & Li, Gengyin, 2022. "An incentive profit-sharing mechanism for welfare transfer in balancing market integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhaoyuan & Zhou, Ming & Li, Gengyin & Zhao, Tong & Zhang, Yan & Liu, Xiaojuan, 2020. "Interaction between balancing market design and market behaviour of wind power producers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Liu, Shuangquan & Yang, Qiang & Cai, Huaxiang & Yan, Minghui & Zhang, Maolin & Wu, Dianning & Xie, Mengfei, 2019. "Market reform of Yunnan electricity in southwestern China: Practice, challenges and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Singh, Shweta & Upadhyay, Surya Prakash & Powar, Satvasheel, 2022. "Developing an integrated social, economic, environmental, and technical analysis model for sustainable development using hybrid multi-criteria decision making methods," Applied Energy, Elsevier, vol. 308(C).
    4. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    5. Shen, Jian-jian & Cheng, Chun-tian & Jia, Ze-bin & Zhang, Yang & Lv, Quan & Cai, Hua-xiang & Wang, Bang-can & Xie, Meng-fei, 2022. "Impacts, challenges and suggestions of the electricity market for hydro-dominated power systems in China," Renewable Energy, Elsevier, vol. 187(C), pages 743-759.
    6. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    7. Claude Meidinger, 2018. "Cooperation and evolution of meaning in senders-receivers games," Post-Print halshs-01960762, HAL.
    8. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    9. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    10. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    11. Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
    12. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Claude Meidinger, 2018. "Cooperation and evolution of meaning in senders-receivers games," Documents de travail du Centre d'Economie de la Sorbonne 18036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    14. AJ A. Bostian & Charles A. Holt & Angela M. Smith, 2008. "Newsvendor "Pull-to-Center" Effect: Adaptive Learning in a Laboratory Experiment," Manufacturing & Service Operations Management, INFORMS, vol. 10(4), pages 590-608, July.
    15. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    16. Zheng, Xuemei & Menezes, Flavio & Nepal, Rabindra, 2021. "In between the state and the market: An empirical assessment of the early achievements of China's 2015 electricity reform," Energy Economics, Elsevier, vol. 93(C).
    17. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    18. José Luis Lima R. & Javier Nuñez E., 2004. "Experimental Analysis of the Reputational Incentives in a Self Regulated Organization," Econometric Society 2004 Latin American Meetings 194, Econometric Society.
    19. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    20. Şan, Murat & Akpınar, Adem & Bingölbali, Bilal & Kankal, Murat, 2021. "Geo-spatial multi-criteria evaluation of wave energy exploitation in a semi-enclosed sea," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:139:y:2020:i:c:s0301421520300550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.