IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122006475.html
   My bibliography  Save this article

An incentive profit-sharing mechanism for welfare transfer in balancing market integration

Author

Listed:
  • Wu, Zhaoyuan
  • Zhou, Ming
  • Zhang, Zhi
  • Zhao, Huiru
  • Wang, Jianxiao
  • Xu, Jiayu
  • Li, Gengyin

Abstract

Due to the rising share of variable renewable energy, balancing market integration (BMI) has been advocated as a promising solution to achieve flexible resource sharing among different regions and enhance the flexibility of the overall power system. However, BMI can result in welfare transfers among regions, which may correspondingly give rise to resistance to integration. Therefore, an incentive mechanism to facilitate flexible resource sharing under BMI is designed in this paper. We first analyse the sources of the benefits of BMI and compare the influence of different market regulation approaches on the welfare transfer effect via a graphical method. Then, based on the Coase theorem, we design an incentive profit-sharing mechanism that is able to optimize the allocation of flexible resources and eliminate welfare transfers among regions to some extent to reduce possible resistance to integration. Case studies based on the three-region system and a realistic northwest power grid in China show that the balancing cost of multi-region systems can be respectively reduced up to 31% and 25%, and the utilization of flexible units can be increased by over 30% by BMI. Finally, corresponding policy implications for BMI are put forward; the proposed mechanism also provides a useful reference and insight for dealing with welfare transfers in interregional trading.

Suggested Citation

  • Wu, Zhaoyuan & Zhou, Ming & Zhang, Zhi & Zhao, Huiru & Wang, Jianxiao & Xu, Jiayu & Li, Gengyin, 2022. "An incentive profit-sharing mechanism for welfare transfer in balancing market integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006475
    DOI: 10.1016/j.rser.2022.112762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbero, Mattia & Corchero, Cristina & Canals Casals, Lluc & Igualada, Lucia & Heredia, F.-Javier, 2020. "Critical evaluation of European balancing markets to enable the participation of Demand Aggregators," Applied Energy, Elsevier, vol. 264(C).
    2. Lee, Jihong & Sabourian, Hamid, 2007. "Coase theorem, complexity and transaction costs," Journal of Economic Theory, Elsevier, vol. 135(1), pages 214-235, July.
    3. Van den Bergh, Kenneth & Bruninx, Kenneth & Delarue, Erik, 2018. "Cross-border reserve markets: network constraints in cross-border reserve procurement," Energy Policy, Elsevier, vol. 113(C), pages 193-205.
    4. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    5. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    6. Wu, Zhaoyuan & Zhou, Ming & Li, Gengyin & Zhao, Tong & Zhang, Yan & Liu, Xiaojuan, 2020. "Interaction between balancing market design and market behaviour of wind power producers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Poplavskaya, Ksenia & Lago, Jesus & de Vries, Laurens, 2020. "Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets," Applied Energy, Elsevier, vol. 270(C).
    8. van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2016. "The electricity balancing market: Exploring the design challenge," Utilities Policy, Elsevier, vol. 43(PB), pages 186-194.
    9. Poplavskaya, Ksenia & Totschnig, Gerhard & Leimgruber, Fabian & Doorman, Gerard & Etienne, Gilles & de Vries, Laurens, 2020. "Integration of day-ahead market and redispatch to increase cross-border exchanges in the European electricity market," Applied Energy, Elsevier, vol. 278(C).
    10. Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
    11. Vandezande, Leen & Meeus, Leonardo & Belmans, Ronnie & Saguan, Marcelo & Glachant, Jean-Michel, 2010. "Well-functioning balancing markets: A prerequisite for wind power integration," Energy Policy, Elsevier, vol. 38(7), pages 3146-3154, July.
    12. Ngan, H.W., 2010. "Electricity regulation and electricity market reforms in China," Energy Policy, Elsevier, vol. 38(5), pages 2142-2148, May.
    13. Liu, Shuangquan & Yang, Qiang & Cai, Huaxiang & Yan, Minghui & Zhang, Maolin & Wu, Dianning & Xie, Mengfei, 2019. "Market reform of Yunnan electricity in southwestern China: Practice, challenges and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Yang & Chen, Lin & Liu, Rui, 2023. "The source of wind power producers’ market power," Energy Policy, Elsevier, vol. 173(C).
    2. Shuangquan Liu & Yigong Xie & Xinchun Zhu & Qizhuan Shao & Wenxuan Li & Zhuochen Guo & Xue Liu, 2023. "A Transmission Price Design Considering the Marginal Benefits of the Transmission and Spatiotemporal Information of Electricity Demand," Energies, MDPI, vol. 16(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhaoyuan & Zhou, Ming & Li, Gengyin & Zhao, Tong & Zhang, Yan & Liu, Xiaojuan, 2020. "Interaction between balancing market design and market behaviour of wind power producers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Poplavskaya, Ksenia & de Vries, Laurens, 2019. "Distributed energy resources and the organized balancing market: A symbiosis yet? Case of three European balancing markets," Energy Policy, Elsevier, vol. 126(C), pages 264-276.
    3. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    4. Karl-Martin Ehrhart & Fabian Ocker, 2021. "Design and regulation of balancing power auctions: an integrated market model approach," Journal of Regulatory Economics, Springer, vol. 60(1), pages 55-73, August.
    5. Lago, Jesus & Poplavskaya, Ksenia & Suryanarayana, Gowri & De Schutter, Bart, 2021. "A market framework for grid balancing support through imbalances trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Prakash, Abhijith & Bruce, Anna & MacGill, Iain, 2022. "Insights on designing effective and efficient frequency control arrangements from the Australian National Electricity Market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Sirin, Selahattin Murat & Yilmaz, Berna N., 2021. "The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market," Energy Policy, Elsevier, vol. 151(C).
    8. Ihlemann, Maren & van Stiphout, Arne & Poncelet, Kris & Delarue, Erik, 2022. "Benefits of regional coordination of balancing capacity markets in future European electricity markets," Applied Energy, Elsevier, vol. 314(C).
    9. Poplavskaya, Ksenia & Lago, Jesus & Strömer, Stefan & de Vries, Laurens, 2021. "Making the most of short-term flexibility in the balancing market: Opportunities and challenges of voluntary bids in the new balancing market design," Energy Policy, Elsevier, vol. 158(C).
    10. Christos Roumkos & Pandelis N. Biskas & Ilias G. Marneris, 2022. "Integration of European Electricity Balancing Markets," Energies, MDPI, vol. 15(6), pages 1-26, March.
    11. Oprea, Simona-Vasilica & Bâra, Adela & Ciurea, Cristian-Eugen, 2022. "A novel cost-revenue allocation computation for the competitiveness of balancing responsible parties, including RES. Insights from the electricity market," Renewable Energy, Elsevier, vol. 199(C), pages 881-894.
    12. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    14. Casimir Lorenz & Clemens Gerbaulet, 2017. "Wind Providing Balancing Reserves: An Application to the German Electricity System of 2025," Discussion Papers of DIW Berlin 1655, DIW Berlin, German Institute for Economic Research.
    15. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    17. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    18. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    19. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    20. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.