IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics030626192031165x.html
   My bibliography  Save this article

Integration of day-ahead market and redispatch to increase cross-border exchanges in the European electricity market

Author

Listed:
  • Poplavskaya, Ksenia
  • Totschnig, Gerhard
  • Leimgruber, Fabian
  • Doorman, Gerard
  • Etienne, Gilles
  • de Vries, Laurens

Abstract

The zonal electricity market design in the Central Western European electricity market relies on redispatching generation units after market closure to manage congestion within bidding zones, while congestion between the zones is handled using flow-based market coupling. The combination of internal congestion in the meshed European network with a growing share of renewables increases the frequency and magnitude of congestion events and limits cross-border trade. The growing costs of redispatching and the divergence between grid physics and zonal markets lead to welfare losses. This paper is the first to propose an approach to improve the combined efficiency of flow-based market coupling and redispatching. We develop a novel methodology for congestion management in a zonal market with flow-based market coupling in order to increase cross-border exchanges by integrating preventive redispatch into the day-ahead market. In this approach, a set of integrated redispatch units is selected based on their high potential to reduce congestion and, as a result, free up grid capacity for cross-border exchange. We use three multi-step optimization models to demonstrate the benefits of the enhanced zonal market with integrated redispatch by comparing it to the nodal market model and a zonal market model with flow-based market coupling. The case study demonstrates the potential of the proposed methodology to significantly increase cross-border capacity and reduce the need for costly ex post redispatch. The approach is shown to be a feasible option for improving European market integration and thereby to achieve overall welfare gains.

Suggested Citation

  • Poplavskaya, Ksenia & Totschnig, Gerhard & Leimgruber, Fabian & Doorman, Gerard & Etienne, Gilles & de Vries, Laurens, 2020. "Integration of day-ahead market and redispatch to increase cross-border exchanges in the European electricity market," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s030626192031165x
    DOI: 10.1016/j.apenergy.2020.115669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192031165X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Le, Hong Lam & Ilea, Valentin & Bovo, Cristian, 2019. "Integrated European intra-day electricity market: Rules, modeling and analysis," Applied Energy, Elsevier, vol. 238(C), pages 258-273.
    2. Schönheit, David & Weinhold, Richard & Dierstein, Constantin, 2020. "The impact of different strategies for generation shift keys (GSKs) on the flow-based market coupling domain: A model-based analysis of Central Western Europe," Applied Energy, Elsevier, vol. 258(C).
    3. Jorgenson, Jennie & Denholm, Paul & Mai, Trieu, 2018. "Analyzing storage for wind integration in a transmission-constrained power system," Applied Energy, Elsevier, vol. 228(C), pages 122-129.
    4. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    5. Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2017. "The effect of high levels of solar generation on congestion in the European electricity transmission grid," Applied Energy, Elsevier, vol. 205(C), pages 1128-1140.
    6. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    7. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    8. Staudt, Philipp & Schmidt, Marc & Gärttner, Johannes & Weinhardt, Christof, 2018. "A decentralized approach towards resolving transmission grid congestion in Germany using vehicle-to-grid technology," Applied Energy, Elsevier, vol. 230(C), pages 1435-1446.
    9. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    10. Verzijlbergh, Remco & Brancucci Martínez-Anido, Carlo & Lukszo, Zofia & de Vries, Laurens, 2014. "Does controlled electric vehicle charging substitute cross-border transmission capacity?," Applied Energy, Elsevier, vol. 120(C), pages 169-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Despoina I. Makrygiorgou & Nikos Andriopoulos & Ioannis Georgantas & Christos Dikaiakos & George P. Papaioannou, 2020. "Cross-Border Electricity Trading in Southeast Europe Towards an Internal European Market," Energies, MDPI, vol. 13(24), pages 1-18, December.
    2. Jean Pierre Namahoro & Qiaosheng Wu & Haijun Xiao & Na Zhou, 2021. "The Impact of Renewable Energy, Economic and Population Growth on CO 2 Emissions in the East African Region: Evidence from Common Correlated Effect Means Group and Asymmetric Analysis," Energies, MDPI, vol. 14(2), pages 1-21, January.
    3. Rafael Finck, 2021. "Impact of Flow Based Market Coupling on the European Electricity Markets," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 173-186, June.
    4. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    5. Bucksteeg, Michael & Voswinkel, Simon & Blumberg, Gerald, 2023. "Improving flow-based market coupling by integrating redispatch potential - Evidence from a large-scale model," EconStor Preprints 270878, ZBW - Leibniz Information Centre for Economics.
    6. Davi-Arderius, Daniel & Jamasb, Tooraj & Rosellon, Juan, 2024. "Renewable Integration and Power System Operation: The Role of Market Conditions," Working Papers 3-2024, Copenhagen Business School, Department of Economics.
    7. Schönheit, David & Bruninx, Kenneth & Kenis, Michiel & Möst, Dominik, 2022. "Improved selection of critical network elements for flow-based market coupling based on congestion patterns," Applied Energy, Elsevier, vol. 306(PA).
    8. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    9. Rebeca Ramirez Acosta & Chathura Wanigasekara & Emilie Frost & Tobias Brandt & Sebastian Lehnhoff & Christof Büskens, 2023. "Integration of Intelligent Neighbourhood Grids to the German Distribution Grid: A Perspective," Energies, MDPI, vol. 16(11), pages 1-16, May.
    10. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand," Applied Energy, Elsevier, vol. 285(C).
    11. Wu, Zhaoyuan & Zhou, Ming & Zhang, Zhi & Zhao, Huiru & Wang, Jianxiao & Xu, Jiayu & Li, Gengyin, 2022. "An incentive profit-sharing mechanism for welfare transfer in balancing market integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Bakhshideh Zad, Bashir & Toubeau, Jean-François & Bruninx, Kenneth & Vatandoust, Behzad & De Grève, Zacharie & Vallée, François, 2022. "Supervised learning-assisted modeling of flow-based domains in European resource adequacy assessments," Applied Energy, Elsevier, vol. 325(C).
    13. Ruhang, Xu & Jia, Jia, 2023. "Towards reliability competition: Non-cooperative market mechanism under high variable renewable energy penetration," Applied Energy, Elsevier, vol. 331(C).
    14. Schönheit, David & Bruninx, Kenneth & Kenis, Michiel & Möst, Dominik, 2021. "Improved selection of critical network elements for flow-based market coupling based on congestion patterns," EconStor Preprints 233467, ZBW - Leibniz Information Centre for Economics.
    15. Samuli Honkapuro & Jasmin Jaanto & Salla Annala, 2023. "A Systematic Review of European Electricity Market Design Options," Energies, MDPI, vol. 16(9), pages 1-26, April.
    16. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    17. Schönheit, David & Dierstein, Constantin & Möst, Dominik, 2021. "Do minimum trading capacities for the cross-zonal exchange of electricity lead to welfare losses?," Energy Policy, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saez, Yago & Mochon, Asuncion & Corona, Luis & Isasi, Pedro, 2019. "Integration in the European electricity market: A machine learning-based convergence analysis for the Central Western Europe region," Energy Policy, Elsevier, vol. 132(C), pages 549-566.
    2. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2019. "Electric Vehicles as Flexibility Management Strategy for the Electricity System—A Comparison between Different Regions of Europe," Energies, MDPI, vol. 12(13), pages 1-19, July.
    3. Stawska, Anna & Romero, Natalia & de Weerdt, Mathijs & Verzijlbergh, Remco, 2021. "Demand response: For congestion management or for grid balancing?," Energy Policy, Elsevier, vol. 148(PA).
    4. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2019. "Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study," Applied Energy, Elsevier, vol. 235(C), pages 1637-1650.
    5. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Virag, Ana & Gibescu, Madeleine, 2022. "Short term wholesale electricity market designs: A review of identified challenges and promising solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    7. Lina Silva-Rodriguez & Anibal Sanjab & Elena Fumagalli & Ana Virag & Madeleine Gibescu, 2020. "Short Term Electricity Market Designs: Identified Challenges and Promising Solutions," Papers 2011.04587, arXiv.org.
    8. Piao, Longjian & de Vries, Laurens & de Weerdt, Mathijs & Yorke-Smith, Neil, 2021. "Electricity markets for DC distribution systems: Locational pricing trumps wholesale pricing," Energy, Elsevier, vol. 214(C).
    9. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Benjamin F. Hobbs & Fieke A.M. Rijkers & Maroeska G. Boots, 2005. "The More Cooperation, The More Competition? A Cournot Analysis of the Benefits of Electric Market Coupling," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 69-98.
    11. Karsten Neuhoff, 2002. "Optimal congestion treatment for bilateral electricity trading," Working Papers EP05, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Rebenaque, Olivier & Schmitt, Carlo & Schumann, Klemens & Dronne, Théo & Roques, Fabien, 2023. "Success of local flexibility market implementation: A review of current projects," Utilities Policy, Elsevier, vol. 80(C).
    13. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    14. Glachant, Jean-Michel & Pignon, Virginie, 2005. "Nordic congestion's arrangement as a model for Europe? Physical constraints vs. economic incentives," Utilities Policy, Elsevier, vol. 13(2), pages 153-162, June.
    15. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium," EconStor Preprints 233852, ZBW - Leibniz Information Centre for Economics.
    16. Simshauser, P., 2019. "On the impact of government-initiated CfD’s in Australia’s National Electricity Market," Cambridge Working Papers in Economics 1901, Faculty of Economics, University of Cambridge.
    17. Zugang Liu & Anna Nagurney, 2009. "An integrated electric power supply chain and fuel market network framework: Theoretical modeling with empirical analysis for New England," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 600-624, October.
    18. Blázquez de Paz, Mario, 2018. "Electricity auctions in the presence of transmission constraints and transmission costs," Energy Economics, Elsevier, vol. 74(C), pages 605-627.
    19. Glanchant, J-M. & Pignon, V., 2003. "Nordic Electricity Congestion's Arrangement as a Model for Europe: Physical Constraints or Operators' Opportunity," Cambridge Working Papers in Economics 0313, Faculty of Economics, University of Cambridge.
    20. Zhang, Ning, 2009. "Market performance and bidders' bidding behavior in the New York Transmission Congestion Contract market," Energy Economics, Elsevier, vol. 31(1), pages 61-68, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s030626192031165x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.