IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v44y2023i6p71-112.html
   My bibliography  Save this article

Assessing Improved Price Zones in Europe: Flow-Based Market Coupling in Central Western Europe in Focus

Author

Listed:
  • Tim Felling
  • Björn Felten
  • Paul Osinski
  • Christoph Weber

Abstract

Theoretical papers have identified several sources of inefficiencies of flow-based market coupling (FBMC), the implicit congestion management method used to couple the Central Western European (CWE) electricity markets. These inefficiencies ultimately lead to welfare losses. In this paper, a large-scale model framework is introduced for FBMC assessments, focusing on modeling the capacity allocation and market clearing processes. The present paper completes this framework by presenting a newly developed redispatch model. Furthermore, we provide a case study assessing improved price zone configurations (PZCs) for the CWE electricity system, motivated by the debate on the currently-existing PZC. Our results show that improved PZCs—even while maintaining the number of price zones—can significantly reduce redispatch quantities and overall system costs. Moreover, making use of the insights of (Felten et al., 2021), we explain why increasing the number of price zones may not always increase welfare when using FBMC.

Suggested Citation

  • Tim Felling & Björn Felten & Paul Osinski & Christoph Weber, 2023. "Assessing Improved Price Zones in Europe: Flow-Based Market Coupling in Central Western Europe in Focus," The Energy Journal, , vol. 44(6), pages 71-112, November.
  • Handle: RePEc:sae:enejou:v:44:y:2023:i:6:p:71-112
    DOI: 10.5547/01956574.44.6.tfel
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.44.6.tfel
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.44.6.tfel?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    2. Löschel, Andreas & Flues, Florens & Pothen, Frank & Massier, Philipp, 2013. "Den Strommarkt an die Wirklichkeit anpassen: Skizze einer neuen Marktordnung," ZEW Discussion Papers 13-065, ZEW - Leibniz Centre for European Economic Research.
    3. Schönheit, David & Weinhold, Richard & Dierstein, Constantin, 2020. "The impact of different strategies for generation shift keys (GSKs) on the flow-based market coupling domain: A model-based analysis of Central Western Europe," Applied Energy, Elsevier, vol. 258(C).
    4. Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
    5. Löschel, Andreas & Flues, Florens & Pothen, Frank & Massier, Philipp, 2013. "Den deutschen Strommarkt an die Wirklichkeit anpassen: Skizze einer neuen Marktordnung," ZEW policy briefs 7/2013, ZEW - Leibniz Centre for European Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Germeshausen, Robert, 2016. "Effects of Attribute-Based Regulation on Technology Adoption - The Case of Feed-In Tariffs for Solar Photovoltaic," VfS Annual Conference 2016 (Augsburg): Demographic Change 145712, Verein für Socialpolitik / German Economic Association.
    2. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.
    3. Leipprand, Anna & Flachsland, Christian & Pahle, Michael, 2017. "Advocates or cartographers? Scientific advisors and the narratives of German energy transition," Energy Policy, Elsevier, vol. 102(C), pages 222-236.
    4. Jonas Egerer & Jens Weibezahn & Hauke Hermann, 2015. "Two Price Zones for the German Electricity Market: Market Implications and Distributional Effects," Discussion Papers of DIW Berlin 1451, DIW Berlin, German Institute for Economic Research.
    5. Felten, Björn, 2020. "An integrated model of coupled heat and power sectors for large-scale energy system analyses," Applied Energy, Elsevier, vol. 266(C).
    6. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    7. Felten, Björn & Osinski, Paul & Felling, Tim & Weber, Christoph, 2021. "The flow-based market coupling domain - Why we can't get it right," Utilities Policy, Elsevier, vol. 70(C).
    8. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    9. Peter, Jakob & Wagner, Johannes, 2018. "Optimal Allocation of Variable Renewable Energy Considering Contributions to Security of Supply," EWI Working Papers 2018-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    10. Xiaohua Zhang & Jun Xie & Zhengwei Zhu & Jianfeng Zheng & Hao Qiang & Hailong Rong, 2016. "Smart Grid Cost-Emission Unit Commitment via Co-Evolutionary Agents," Energies, MDPI, vol. 9(10), pages 1-13, October.
    11. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    12. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    13. Misconel, S. & Leisen, R. & Mikurda, J. & Zimmermann, F. & Fraunholz, C. & Fichtner, W. & Möst, D. & Weber, C., 2022. "Systematic comparison of high-resolution electricity system modeling approaches focusing on investment, dispatch and generation adequacy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. De Vos, K. & Stevens, N. & Devolder, O. & Papavasiliou, A. & Hebb, B. & Matthys-Donnadieu, J., 2019. "Dynamic dimensioning approach for operating reserves: Proof of concept in Belgium," Energy Policy, Elsevier, vol. 124(C), pages 272-285.
    15. Govind Joshi & Salman Mohagheghi, 2021. "Optimal Operation of Combined Energy and Water Systems for Community Resilience against Natural Disasters," Energies, MDPI, vol. 14(19), pages 1-19, September.
    16. Keane, A. & Tuohy, A. & Meibom, P. & Denny, E. & Flynn, D. & Mullane, A. & O'Malley, M., 2011. "Demand side resource operation on the Irish power system with high wind power penetration," Energy Policy, Elsevier, vol. 39(5), pages 2925-2934, May.
    17. Zhu, Xu & Yang, Jun & Pan, Xueli & Li, Gaojunjie & Rao, Yingqing, 2020. "Regional integrated energy system energy management in an industrial park considering energy stepped utilization," Energy, Elsevier, vol. 201(C).
    18. Leisen, Robin & Radek, Julian & Weber, Christoph, 2024. "Modeling combined-cycle power plants in a detailed electricity market model," Energy, Elsevier, vol. 298(C).
    19. Hao Chen & Chi Kong Chyong & Jia-Ning Kang & Yi-Ming Wei, 2018. "Economic dispatch in the electricity sector in China: potential benefits and challenges ahead," Working Papers EPRG 1819, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:44:y:2023:i:6:p:71-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.