IDEAS home Printed from
   My bibliography  Save this paper

Optimal capacity adjustments in electricity market models – an iterative approach based on operational margins and the relevant supply stack


  • Benjamin Böcker
  • Robin Leisen
  • Christoph Weber

    (House of Energy Markets and Finance, University of Duisburg-Essen (Campus Essen))


The modelling of energy systems often has to balance two aspects. High level of detail, e.g. technical constraints on the one hand and analysis of long-term system optimization on the other. When focusing on one of the two aspects, models can be solved in a reasonable time. In order to combine both aspects in one model we use a problem-specific iterative approach. A detailed system model is linked to iterative adjustments of investments. This is based on a subgradient method of optimization. The approach can be described as a detailed dispatch model with adjustments towards an investment model. The results show that the algorithm is quite efficient for a stylized model. For a larger model, performance is not yet sufficient for day-to-day practical use, but several elements for further improvement are identified.

Suggested Citation

  • Benjamin Böcker & Robin Leisen & Christoph Weber, "undated". "Optimal capacity adjustments in electricity market models – an iterative approach based on operational margins and the relevant supply stack," EWL Working Papers 1806, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
  • Handle: RePEc:dui:wpaper:1806

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    2. Pöstges, Arne & Weber, Christoph, 2019. "Time series aggregation – A new methodological approach using the “peak-load-pricing” model," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    3. Spiecker, Stephan & Vogel, Philip & Weber, Christoph, 2013. "Evaluating interconnector investments in the north European electricity system considering fluctuating wind power penetration," Energy Economics, Elsevier, vol. 37(C), pages 114-127.
    4. van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F., 2012. "The economics of planning electricity transmission to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty," Energy Economics, Elsevier, vol. 34(6), pages 2089-2101.
    5. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    6. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    7. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
    8. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    9. Jeremy A. Bloom, 1983. "Solving an Electricity Generating Capacity Expansion Planning Problem by Generalized Benders' Decomposition," Operations Research, INFORMS, vol. 31(1), pages 84-100, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seljom, Pernille & Tomasgard, Asgeir, 2015. "Short-term uncertainty in long-term energy system models — A case study of wind power in Denmark," Energy Economics, Elsevier, vol. 49(C), pages 157-167.
    2. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, Open Access Journal, vol. 13(3), pages 1-61, February.
    3. Seljom, Pernille & Lindberg, Karen Byskov & Tomasgard, Asgeir & Doorman, Gerard & Sartori, Igor, 2017. "The impact of Zero Energy Buildings on the Scandinavian energy system," Energy, Elsevier, vol. 118(C), pages 284-296.
    4. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    5. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, Open Access Journal, vol. 11(7), pages 1-29, July.
    6. Murphy, Frederic & Pierru, Axel & Smeers, Yves, 2019. "Measuring the effects of price controls using mixed complementarity models," European Journal of Operational Research, Elsevier, vol. 275(2), pages 666-676.
    7. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    8. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    9. Matar, Walid & Murphy, Frederic & Pierru, Axel & Rioux, Bertrand, 2015. "Lowering Saudi Arabia's fuel consumption and energy system costs without increasing end consumer prices," Energy Economics, Elsevier, vol. 49(C), pages 558-569.
    10. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    11. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Bahn, Olivier & Marcy, Mathilde & Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2013. "Electrification of the Canadian road transportation sector: A 2050 outlook with TIMES-Canada," Energy Policy, Elsevier, vol. 62(C), pages 593-606.
    13. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    14. Frederic Murphy & Axel Pierru & Yves Smeers, 2016. "A Tutorial on Building Policy Models as Mixed-Complementarity Problems," Interfaces, INFORMS, vol. 46(6), pages 465-481, December.
    15. Riikka Siljander & Tommi Ekholm, 2018. "Integrated scenario modelling of energy, greenhouse gas emissions and forestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 783-802, June.
    16. Crow, Daniel J.G. & Giarola, Sara & Hawkes, Adam D., 2018. "A dynamic model of global natural gas supply," Applied Energy, Elsevier, vol. 218(C), pages 452-469.
    17. Hickey, Conor & Deane, Paul & McInerney, Celine & Ó Gallachóir, Brian, 2019. "Is there a future for the gas network in a low carbon energy system?," Energy Policy, Elsevier, vol. 126(C), pages 480-493.
    18. Riepin, Iegor & Möbius, Thomas & Müsgens, Felix, 2021. "Modelling uncertainty in coupled electricity and gas systems—Is it worth the effort?," Applied Energy, Elsevier, vol. 285(C).
    19. Lecuyer, Oskar & Vogt-Schilb, Adrien, 2014. "Optimal transition from coal to gas and renewable power under capacity constraints and adjustment costs," Policy Research Working Paper Series 6985, The World Bank.
    20. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.

    More about this item


    energy system modelling; investment;

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dui:wpaper:1806. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andreas Fritz (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.