IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125003489.html
   My bibliography  Save this article

Evolutionary pathways of renewable power system considering low-carbon policies: An agent-based modelling approach

Author

Listed:
  • Zhao, Conghao
  • Zhou, Ming
  • Li, Jian
  • Fu, Zhihang
  • Liu, Dazheng
  • Wu, Zhaoyuan

Abstract

The proposed "carbon neutrality" goal necessitates a profound decarbonization of China's power system, which involves reshaping the traditional coal-dominated energy structure. The orderly phase-out of coal-fired generation units and the realization of safe and economic transformation of the power system are important challenges faced by the construction of low-carbon power systems. As China's electricity market reform advances, the design of low-carbon policies and the self-interested behaviour of various market players will critically influence the decarbonization process. This article proposes an agent-based modelling approach that embeds a renewable energy investment model and a coal-fired power decommissioning model in power generation companies. The impact of low-carbon synergistic policy design on renewable energy and coal-fired power is examined using a representative region of China as the measurement target. The results indicate that while low-carbon policies exhibit varying effects across different regions, they uniformly contribute to a reduction in carbon emission intensity. Additionally, the deep peak regulation compensation policy and energy storage inputs address the issue of diminished flexibility resulting from the gradual phase-out of coal-fired generation units. These policies are complementary and collectively facilitate China's transition to a safe and economic low-carbon energy system.

Suggested Citation

  • Zhao, Conghao & Zhou, Ming & Li, Jian & Fu, Zhihang & Liu, Dazheng & Wu, Zhaoyuan, 2025. "Evolutionary pathways of renewable power system considering low-carbon policies: An agent-based modelling approach," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003489
    DOI: 10.1016/j.renene.2025.122686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125003489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mason, Karl & Qadrdan, Meysam & Jenkins, Nicholas, 2021. "Investing in generation and storage capacity in a liberalised electricity market: An agent based approach," Applied Energy, Elsevier, vol. 294(C).
    2. Wu, C.B. & Guan, P.B. & Zhong, L.N. & Lv, J. & Hu, X.F. & Huang, G.H. & Li, C.C., 2020. "An optimized low-carbon production planning model for power industry in coal-dependent regions - A case study of Shandong, China," Energy, Elsevier, vol. 192(C).
    3. Chen, Bingkun & Chen, Zhuo & Liu, Xiaoyue Cathy & Zheng, Nan & Xiao, Qijie, 2024. "Measuring the effectiveness of incorporating mobile charging services into urban electric vehicle charging network: An agent-based approach," Renewable Energy, Elsevier, vol. 234(C).
    4. Jiao, Jianling & Song, Jiangfeng & Ding, Tao, 2024. "The impact of synergistic development of renewable energy and digital economy on energy intensity: Evidence from 33 countries," Energy, Elsevier, vol. 295(C).
    5. Yin, Guangzhi & Duan, Maosheng, 2022. "Pricing the deep peak regulation service of coal-fired power plants to promote renewable energy integration," Applied Energy, Elsevier, vol. 321(C).
    6. He, Yong & Zeng, Zhaoai & Liao, Nuo, 2024. "Multi-objective optimization of regional power generation mix considering both carbon cap-and-trade mechanisms and renewable portfolio standards," Renewable Energy, Elsevier, vol. 231(C).
    7. Wu, Huihuang & Yang, Haozhe & Hu, Xiurong & Zheng, Leyi & Li, Jie & Li, Yangfan & Wang, Xian & Ge, Wendong & Zhou, Yuhan & Liu, Ying & Liu, Junfeng & Wang, Yuqing & Ma, Jianmin & Tao, Shu, 2024. "Complementing carbon tax with renewable energy investment to decarbonize the energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
    9. Bao, Xiongjiantao & Zhao, Wenhui & Wang, Xiaomei & Tan, Zhongfu, 2019. "Impact of policy mix concerning renewable portfolio standards and emissions trading on electricity market," Renewable Energy, Elsevier, vol. 135(C), pages 761-774.
    10. Lei, Nuoa & Masanet, Eric & Koomey, Jonathan, 2021. "Best practices for analyzing the direct energy use of blockchain technology systems: Review and policy recommendations," Energy Policy, Elsevier, vol. 156(C).
    11. Wu, Zhaoyuan & Zhou, Ming & Zhang, Zhi & Zhao, Huiru & Wang, Jianxiao & Xu, Jiayu & Li, Gengyin, 2022. "An incentive profit-sharing mechanism for welfare transfer in balancing market integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Wang, Yongpei & Yan, Qing & Luo, Yifei & Zhang, Qian, 2023. "Carbon abatement of electricity sector with renewable energy deployment: Evidence from China," Renewable Energy, Elsevier, vol. 210(C), pages 1-11.
    13. Rogge, Karoline S. & Pfluger, Benjamin & Geels, Frank W., 2020. "Transformative policy mixes in socio-technical scenarios: The case of the low-carbon transition of the German electricity system (2010–2050)," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    14. Béres, Rebeka & Nijs, Wouter & Boldrini, Annika & van den Broek, Machteld, 2024. "Will hydrogen and synthetic fuels energize our future? Their role in Europe's climate-neutral energy system and power system dynamics," Applied Energy, Elsevier, vol. 375(C).
    15. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    16. Nguyen, Le Khanh Ngan & Howick, Susan & Megiddo, Itamar, 2024. "A framework for conceptualising hybrid system dynamics and agent-based simulation models," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1153-1166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Sida & Zhang, Xingping & Zhang, Haonan & Ju, Liwei & Zhang, Xinyue, 2024. "A two-stage bi-level electricity-carbon coordinated optimization model for China's coal-fired power system considering variable renewable energy bidding," Energy, Elsevier, vol. 312(C).
    2. Jordi Molas-Gallart & Alejandra Boni & Sandro Giachi & Johan Schot, 2021. "A formative approach to the evaluation of Transformative Innovation Policies [The Need for Reflexive Evaluation Approaches in Development Cooperation]," Research Evaluation, Oxford University Press, vol. 30(4), pages 431-442.
    3. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    4. Xu, Qi & Liu, Kui, 2024. "Hero or Devil: A comparison of different carbon tax policies for China," Energy, Elsevier, vol. 306(C).
    5. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    6. Youhyun Lee & Inseok Seo, 2019. "Sustainability of a Policy Instrument: Rethinking the Renewable Portfolio Standard in South Korea," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    7. Yang, Fei & Liu, Kang & Wu, Lei & Ren, Yi & Liang, Tian, 2025. "Urban geometry and energy efficiency: Evidence from 282 cities in China," Energy, Elsevier, vol. 319(C).
    8. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    9. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    10. Song, Yuegang & Zhang, Bicheng & Wang, Jianhua & Kwek, Keh, 2022. "The impact of climate change on China's agricultural green total factor productivity," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    11. Ewelina Kochanek, 2021. "Evaluation of Energy Transition Scenarios in Poland," Energies, MDPI, vol. 14(19), pages 1-13, September.
    12. Cao, Lihong & Wang, Yueying & Yu, Jinyi & Zhang, Yikai & Yin, Xiaoye, 2024. "The impact of digital economy on low-carbon transition: What is the role of human capital?," Finance Research Letters, Elsevier, vol. 69(PB).
    13. Xiande, Zhang & Chonghui, Fu & Pengcheng, Xie & Yajie, Bo & Feng, Pan & Wenjun, Wang, 2025. "Carbon price prediction model based on multi-agent and environment co-evolution," Energy, Elsevier, vol. 328(C).
    14. Zhang, Chao & Fan, Yupeng & Fang, Chuanglin, 2024. "Orderly and synergistic development of urban-rural integration based on evolutionary game model: A case study in the Jiangxi Province, China," Land Use Policy, Elsevier, vol. 146(C).
    15. Shuangquan Liu & Yigong Xie & Xinchun Zhu & Qizhuan Shao & Wenxuan Li & Zhuochen Guo & Xue Liu, 2023. "A Transmission Price Design Considering the Marginal Benefits of the Transmission and Spatiotemporal Information of Electricity Demand," Energies, MDPI, vol. 16(18), pages 1-19, September.
    16. Shi, Shouyuan & Yu, Tao & Lan, Chaofan & Pan, Zhenning, 2024. "Estimating the actual emission cost in an annual compliance cycle: Synergistic generation and carbon trading optimization for price-taking generation companies," Applied Energy, Elsevier, vol. 376(PA).
    17. Wu, Zhaoyuan & Chen, Zili & Wang, Congyi & Zhou, Ming & Wang, Jianxiao & Chen, Lin, 2024. "Unlocking the potential of rooftop solar panels: An incentive rate structure design," Energy Policy, Elsevier, vol. 190(C).
    18. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Hu, Yu & Chi, Yuanying & Zhou, Wenbing & Li, Jialin & Wang, Zhengzao & Yuan, Yongke, 2023. "The interactions between renewable portfolio standards and carbon emission trading in China: An evolutionary game theory perspective," Energy, Elsevier, vol. 271(C).
    20. Ba-Alawi, Abdulrahman H. & Nguyen, Hai-Tra & Yoo, ChangKyoo, 2024. "Coordinated operation for a resilient and green energy-water supply system: A co-optimization approach with flexible strategies," Energy, Elsevier, vol. 304(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.