IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8099-d694367.html
   My bibliography  Save this article

Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study

Author

Listed:
  • Mariusz Niekurzak

    (Faculty of Management, AGH University of Science and Technology, 30-067 Krakow, Poland)

  • Jerzy Mikulik

    (Faculty of Management, AGH University of Science and Technology, 30-067 Krakow, Poland)

Abstract

This paper presents an algorithm for modeling electricity and natural gas consumption in a walking furnace with the use of artificial intelligence and simulation methods, depending on the length of the rolling campaign and the established rolling program. This algorithm is the basis for the development of a proposal for a set of minimum requirements characterizing the Best Available Techniques (BAT) for beam furnaces intended for hot rolling, taking into account the requirements set out in national regulations and the recommendations described in the BREF reference documents. This information should be taken into account when drawing up an application for an integrated permit, as well as when setting emission limit values. Based on the constructed algorithm, it was shown that depending on their type and technical specification, the analyzed projects will offer measurable economic benefits in the form of reducing the amount of energy consumed by 1,076,400 kWh during the implementation of 50 rolling campaigns to reduce gas by 14,625 GJ and environmental benefits in the form of reduction of pollutant emissions into the atmosphere 80–360 g/Mg. The constructed algorithm was validated in the Dosimis-3 program, based on a discrete event-driven simulation. Thanks to this representation of the model, its user can interactively participate in changes that take place in the model and thus evaluate its behavior. The model, verified in real conditions, can be the basic source of information for making effective operational technological decisions related to the preparation of production at the rolling mill as part of planning and long-term activities.

Suggested Citation

  • Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8099-:d:694367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lidia Gawlik & Eugeniusz Mokrzycki, 2019. "Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package," Energies, MDPI, vol. 12(17), pages 1-19, August.
    2. Lei, Nuoa & Masanet, Eric & Koomey, Jonathan, 2021. "Best practices for analyzing the direct energy use of blockchain technology systems: Review and policy recommendations," Energy Policy, Elsevier, vol. 156(C).
    3. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    4. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    5. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "The Effects of Capital and Energy Subsidies on the Optimal Design of Microgrid Systems," Energies, MDPI, vol. 13(4), pages 1-23, February.
    6. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    7. Höfer, Tim & Madlener, Reinhard, 2020. "A participatory stakeholder process for evaluating sustainable energy transition scenarios," Energy Policy, Elsevier, vol. 139(C).
    8. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    9. Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Paweł Miązek, 2021. "Methodology for Assessing the Impact of Aperiodic Phenomena on the Energy Balance of Propulsion Engines in Vehicle Electromobility Systems for Given Areas," Energies, MDPI, vol. 14(8), pages 1-24, April.
    10. Dominik Kryzia & Marta Kuta & Dominika Matuszewska & Piotr Olczak, 2020. "Analysis of the Potential for Gas Micro-Cogeneration Development in Poland Using the Monte Carlo Method," Energies, MDPI, vol. 13(12), pages 1-24, June.
    11. Umer Shahzad & Magdalena Radulescu & Syed Rahim & Cem Isik & Zahid Yousaf & Stefan Alexandru Ionescu, 2021. "Do Environment-Related Policy Instruments and Technologies Facilitate Renewable Energy Generation? Exploring the Contextual Evidence from Developed Economies," Energies, MDPI, vol. 14(3), pages 1-25, January.
    12. Piotr Wróblewski & Jerzy Kupiec & Wojciech Drożdż & Wojciech Lewicki & Jarosław Jaworski, 2021. "The Economic Aspect of Using Different Plug-In Hybrid Driving Techniques in Urban Conditions," Energies, MDPI, vol. 14(12), pages 1-17, June.
    13. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    14. Piotr Wróblewski & Wojciech Lewicki, 2021. "A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters," Energies, MDPI, vol. 14(21), pages 1-24, October.
    15. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    16. Dominika Matuszewska & Piotr Olczak, 2020. "Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC)," Energies, MDPI, vol. 13(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Niekurzak & Wojciech Lewicki & Hasan Huseyin Coban & Agnieszka Brelik, 2023. "Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    2. Mariusz Niekurzak & Wojciech Lewicki & Wojciech Drożdż & Paweł Miązek, 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household," Energies, MDPI, vol. 15(16), pages 1-20, August.
    3. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    4. Silvia Maria Zanoli & Crescenzo Pepe & Lorenzo Orlietti, 2023. "Synergic Combination of Hardware and Software Innovations for Energy Efficiency and Process Control Improvement: A Steel Industry Application," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    2. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    3. Piotr Wróblewski & Wojciech Lewicki, 2021. "A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters," Energies, MDPI, vol. 14(21), pages 1-24, October.
    4. Elżbieta Macioszek & Maria Cieśla & Anna Granà, 2023. "Future Development of an Energy-Efficient Electric Scooter Sharing System Based on a Stakeholder Analysis Method," Energies, MDPI, vol. 16(1), pages 1-24, January.
    5. Mariusz Niekurzak & Wojciech Lewicki & Agnieszka Brelik, 2022. "The Challenges for Social and Economic Policy Related to the Energy Transformation - Analysis of Profitability and Minimizing the Risk of Deciding to Invest in a Home Micro-Installation," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 144-159.
    6. Ewelina Kochanek, 2021. "Evaluation of Energy Transition Scenarios in Poland," Energies, MDPI, vol. 14(19), pages 1-13, September.
    7. Mariusz Niekurzak, 2021. "Determining the Unit Values of the Allocation of Greenhouse Gas Emissions for the Production of Biofuels in the Life Cycle," Energies, MDPI, vol. 14(24), pages 1-18, December.
    8. Marcin Rabe & Agnieszka Jakubowska & Veselin Draskovic & Katarzyna Widera & Tomasz Pudło & Agnieszka Łopatka & Łukasz Kuźmiński, 2022. "Comparative Analysis on the Performance and Exhaust Gas Emission of Cars with Spark-Ignition Engines," Energies, MDPI, vol. 15(17), pages 1-18, August.
    9. Maria Cieśla & Elżbieta Macioszek, 2022. "The Perspective Projects Promoting Sustainable Mobility by Active Travel to School on the Example of the Southern Poland Region," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    10. Weiyi Lin & Han Zhao & Bingzhan Zhang & Ye Wang & Yan Xiao & Kang Xu & Rui Zhao, 2022. "Predictive Energy Management Strategy for Range-Extended Electric Vehicles Based on ITS Information and Start–Stop Optimization with Vehicle Velocity Forecast," Energies, MDPI, vol. 15(20), pages 1-27, October.
    11. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries," Energies, MDPI, vol. 14(22), pages 1-22, November.
    12. Berrada, Asmae & Loudiyi, Khalid, 2016. "Operation, sizing, and economic evaluation of storage for solar and wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1117-1129.
    13. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    14. Dominika Matuszewska & Marta Kuta & Piotr Olczak, 2020. "Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions," Energies, MDPI, vol. 13(13), pages 1-24, July.
    15. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    17. Karellas, S. & Tzouganatos, N., 2014. "Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 865-882.
    18. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    19. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    20. Guillaume, Ludovic & Legros, Arnaud & Desideri, Adriano & Lemort, Vincent, 2017. "Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: An experimental comparison between R245fa and R1233zd," Applied Energy, Elsevier, vol. 186(P3), pages 408-422.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8099-:d:694367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.