IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6859-d660248.html
   My bibliography  Save this article

A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters

Author

Listed:
  • Piotr Wróblewski

    (Faculty of Engineering, University of Technology and Economics H. Chodkowska in Warsaw, Jutrzenki 135, 02-231 Warsaw, Poland
    Faculty of Mechatronics, Armament and Aerospace of the Military University of Technology, Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland)

  • Wojciech Lewicki

    (Faculty of Economics, West Pomeranian University of Technology Szczecin, Zołnierska 47, 71-210 Szczecin, Poland)

Abstract

Increasing the market share of low-emission vehicles in relation to individual mobility is one of the main postulates of modern transport policy. In the discussion on low-emission and the new structure of the car fleet, the role of new vehicles is emphasized above all, ignoring the importance of the secondary market. In recent years, both in Poland and in other European Union countries, there has been a noticeable dynamic development of electromobility implementation processes in urban areas, the initial effect of which is increasing market accessibility to commercial vehicles with electric EV/BEV, hybrid HEV/PHEV and fuel cell powered FCEV. As in the case of vehicles powered by conventional ICEV fuels, also in relation to those defined as low-emission, their residual value is lost along with the operational process. Information on this variable is important both for the owner of a newly purchased vehicle, which after the period of its operation will decide to sell it as well as to the future buyer. The scientific aim of the study is to analyze the residual values of selected vehicle models from the primary and secondary market, with particular emphasis on stochastic operational phenomena. The subject of the research is to obtain extensive knowledge on the achieved changes in the residual values of low-emission vehicles in relation to ICEVs. For this purpose, a comparative analysis of the commercial program, data approximated from auction portals and own numerical modeling tool based on a neural network was performed. The research sample included, among others, selected models of passenger cars, the purchase offer of which included the choice of a drive unit powered by conventional and low-emission fuels. The use of this method allowed to answer the question whether low-emission vehicles are characterized by a greater or lesser loss of value in relation to conventionally powered vehicles ICEV.

Suggested Citation

  • Piotr Wróblewski & Wojciech Lewicki, 2021. "A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters," Energies, MDPI, vol. 14(21), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6859-:d:660248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Szabo, John & Fabok, Marton, 2020. "Infrastructures and state-building: Comparing the energy politics of the European Commission with the governments of Hungary and Poland," Energy Policy, Elsevier, vol. 138(C).
    2. Tal, Gil & Nicholas, Michael A. & Turrentine, Thomas S., 2017. "First Look at the Plug-in Vehicle Secondary Market," Institute of Transportation Studies, Working Paper Series qt22p191zs, Institute of Transportation Studies, UC Davis.
    3. Benjamin Leard & Joshua Linn & Virginia McConnell, 2017. "Fuel Prices, New Vehicle Fuel Economy, and Implications for Attribute-Based Standards," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(3), pages 659-700.
    4. Zhang, Xingping & Liang, Yanni & Yu, Enhai & Rao, Rao & Xie, Jian, 2017. "Review of electric vehicle policies in China: Content summary and effect analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 698-714.
    5. Ewelina Sendek-Matysiak & Zbigniew Łosiewicz, 2021. "Analysis of the Development of the Electromobility Market in Poland in the Context of the Implemented Subsidies," Energies, MDPI, vol. 14(1), pages 1-16, January.
    6. Toheed Ghandriz & Bengt Jacobson & Manjurul Islam & Jonas Hellgren & Leo Laine, 2021. "Transportation-Mission-Based Optimization of Heterogeneous Heavy-Vehicle Fleet Including Electrified Propulsion," Energies, MDPI, vol. 14(11), pages 1-43, May.
    7. Tadeusz Dziubak, 2021. "Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter," Energies, MDPI, vol. 14(12), pages 1-28, June.
    8. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    9. Tadeusz Dziubak & Leszek Bąkała, 2021. "Computational and Experimental Analysis of Axial Flow Cyclone Used for Intake Air Filtration in Internal Combustion Engines," Energies, MDPI, vol. 14(8), pages 1-28, April.
    10. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    11. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 103(C), pages 488-506.
    12. Michał Szelka & Mariusz Woszczyński & Jerzy Jagoda & Paweł Kamiński, 2021. "Wireless Leak Detection System as a Way to Reduce Electricity Consumption in Ventilation Ducts," Energies, MDPI, vol. 14(13), pages 1-17, June.
    13. Dominik Kryzia & Marta Kuta & Dominika Matuszewska & Piotr Olczak, 2020. "Analysis of the Potential for Gas Micro-Cogeneration Development in Poland Using the Monte Carlo Method," Energies, MDPI, vol. 13(12), pages 1-24, June.
    14. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    15. Leandro do C. Martins & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan & Javier Faulin, 2021. "Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation," Energies, MDPI, vol. 14(16), pages 1-30, August.
    16. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    17. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    18. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    19. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    20. Manel Arribas-Ibar & Petra A. Nylund & Alexander Brem, 2021. "The Risk of Dissolution of Sustainable Innovation Ecosystems in Times of Crisis: The Electric Vehicle during the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(3), pages 1-14, January.
    21. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    22. Kok, Robert, 2015. "Six years of CO2-based tax incentives for new passenger cars in The Netherlands: Impacts on purchasing behavior trends and CO2 effectiveness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 137-153.
    23. Webb, Jeremy, 2019. "The future of transport: Literature review and overview," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 1-6.
    24. Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
    25. Wojciech Lewicki & Wojciech Drozdz & Piotr Wroblewski & Krzysztof Zarna, 2021. "The Road to Electromobility in Poland: Consumer Attitude Assessment," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 28-39.
    26. Ouyang, Danhua & Zhou, Shen & Ou, Xunmin, 2021. "The total cost of electric vehicle ownership: A consumer-oriented study of China's post-subsidy era," Energy Policy, Elsevier, vol. 149(C).
    27. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    28. Bradley, Thomas H. & Frank, Andrew A., 2009. "Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 115-128, January.
    29. Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Paweł Miązek, 2021. "Methodology for Assessing the Impact of Aperiodic Phenomena on the Energy Balance of Propulsion Engines in Vehicle Electromobility Systems for Given Areas," Energies, MDPI, vol. 14(8), pages 1-24, April.
    30. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    31. Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Jakub Dowejko, 2021. "Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland," Energies, MDPI, vol. 14(8), pages 1-25, April.
    32. Bubeck, Steffen & Tomaschek, Jan & Fahl, Ulrich, 2016. "Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany," Transport Policy, Elsevier, vol. 50(C), pages 63-77.
    33. Paweł Kamiński & Artur Dyczko & Dariusz Prostański, 2021. "Virtual Simulations of a New Construction of the Artificial Shaft Bottom (Shaft Safety Platform) for Use in Mine Shafts," Energies, MDPI, vol. 14(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    2. Iwona Bąk & Małgorzata Tarczyńska-Łuniewska & Anna Barwińska-Małajowicz & Paweł Hydzik & Dariusz Kusz, 2022. "Is Energy Use in the EU Countries Moving toward Sustainable Development?," Energies, MDPI, vol. 15(16), pages 1-26, August.
    3. Maria Cieśla & Elżbieta Macioszek, 2022. "The Perspective Projects Promoting Sustainable Mobility by Active Travel to School on the Example of the Southern Poland Region," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    4. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    5. Katarzyna Sobiech-Grabka & Anna Stankowska & Krzysztof Jerzak, 2022. "Determinants of Electric Cars Purchase Intention in Poland: Personal Attitudes v. Economic Arguments," Energies, MDPI, vol. 15(9), pages 1-26, April.
    6. Marcin Rabe & Agnieszka Jakubowska & Veselin Draskovic & Katarzyna Widera & Tomasz Pudło & Agnieszka Łopatka & Łukasz Kuźmiński, 2022. "Comparative Analysis on the Performance and Exhaust Gas Emission of Cars with Spark-Ignition Engines," Energies, MDPI, vol. 15(17), pages 1-18, August.
    7. Florin Mariasiu & Ioan Aurel Chereches & Horia Raboca, 2023. "Statistical Analysis of the Interdependence between the Technical and Functional Parameters of Electric Vehicles in the European Market," Energies, MDPI, vol. 16(7), pages 1-22, March.
    8. Katarzyna Kubiak-Wójcicka & Filip Polak & Leszek Szczęch, 2022. "Water Power Plants Possibilities in Powering Electric Cars—Case Study: Poland," Energies, MDPI, vol. 15(4), pages 1-17, February.
    9. Mateusz Oszczypała & Jarosław Ziółkowski & Jerzy Małachowski, 2022. "Analysis of Light Utility Vehicle Readiness in Military Transportation Systems Using Markov and Semi-Markov Processes," Energies, MDPI, vol. 15(14), pages 1-24, July.
    10. Elżbieta Macioszek & Maria Cieśla & Anna Granà, 2023. "Future Development of an Energy-Efficient Electric Scooter Sharing System Based on a Stakeholder Analysis Method," Energies, MDPI, vol. 16(1), pages 1-24, January.
    11. Henrique Ferreira & Susana Silva & Tiago Andrade & Erika Laranjeira & Isabel Soares, 2023. "Assessment of Selected Determinants Affecting the Acceptance of the Development of Electromobility by the Private and Business Sectors—A Case Study in Portugal," Energies, MDPI, vol. 16(6), pages 1-19, March.
    12. Adam Novotny & Inez Szeberin & Sándor Kovács & Domicián Máté, 2022. "National Culture and the Market Development of Battery Electric Vehicles in 21 Countries," Energies, MDPI, vol. 15(4), pages 1-16, February.
    13. Jarosław Ziółkowski & Aleksandra Lęgas & Elżbieta Szymczyk & Jerzy Małachowski & Mateusz Oszczypała & Joanna Szkutnik-Rogoż, 2022. "Optimization of the Delivery Time within the Distribution Network, Taking into Account Fuel Consumption and the Level of Carbon Dioxide Emissions into the Atmosphere," Energies, MDPI, vol. 15(14), pages 1-22, July.
    14. Zbigniew Czapla & Grzegorz Sierpiński, 2023. "Driving and Energy Profiles of Urban Bus Routes Predicted for Operation with Battery Electric Buses," Energies, MDPI, vol. 16(15), pages 1-19, July.
    15. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    16. Xiaodong Gao & Pingchuan Dong & Jiawei Cui & Qichao Gao, 2022. "Prediction Model for the Viscosity of Heavy Oil Diluted with Light Oil Using Machine Learning Techniques," Energies, MDPI, vol. 15(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Jakub Dowejko, 2021. "Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland," Energies, MDPI, vol. 14(8), pages 1-25, April.
    2. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    3. Breetz, Hanna L. & Salon, Deborah, 2018. "Do electric vehicles need subsidies? Ownership costs for conventional, hybrid, and electric vehicles in 14 U.S. cities," Energy Policy, Elsevier, vol. 120(C), pages 238-249.
    4. Malima, Gabriel Clement & Moyo, Francis, 2023. "Are electric vehicles economically viable in sub-Saharan Africa? The total cost of ownership of internal combustion engine and electric vehicles in Tanzania," Transport Policy, Elsevier, vol. 141(C), pages 14-26.
    5. Ji, Dandan & Gan, Hongcheng, 2022. "Effects of providing total cost of ownership information on below-40 young consumers’ intent to purchase an electric vehicle: A case study in China," Energy Policy, Elsevier, vol. 165(C).
    6. Agovino, Massimiliano & Ferraro, Aniello & Garofalo, Antonio, 2023. "Are green cars an optimal and efficient choice for motorists? Evidence from Italy," Transport Policy, Elsevier, vol. 141(C), pages 140-151.
    7. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    8. Marcin Połom, 2021. "Technology Development and Spatial Diffusion of Auxiliary Power Sources in Trolleybuses in European Countries," Energies, MDPI, vol. 14(11), pages 1-18, May.
    9. Martin Kalthaus & Jiatang Sun, 2021. "Determinants of Electric Vehicle Diffusion in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 473-510, November.
    10. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    11. Kondev, Bozhil & Dixon, James & Zhou, Zhaoqi & Sabyrbekov, Rahat & Sultanaliev, Kanat & Hirmer, Stephanie A., 2023. "Putting the foot down: Accelerating EV uptake in Kyrgyzstan," Transport Policy, Elsevier, vol. 131(C), pages 87-96.
    12. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    13. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    14. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    15. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    16. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    17. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    18. Ye Yang & Zhongfu Tan, 2019. "Investigating the Influence of Consumer Behavior and Governmental Policy on the Diffusion of Electric Vehicles in Beijing, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    19. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    20. Ouyang, Danhua & Zhou, Shen & Ou, Xunmin, 2021. "The total cost of electric vehicle ownership: A consumer-oriented study of China's post-subsidy era," Energy Policy, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6859-:d:660248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.