IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3774-d580803.html
   My bibliography  Save this article

Wireless Leak Detection System as a Way to Reduce Electricity Consumption in Ventilation Ducts

Author

Listed:
  • Michał Szelka

    (KOMAG, Institute of Mining Technology, Pszczyńska 37, 44-101 Gliwice, Poland)

  • Mariusz Woszczyński

    (KOMAG, Institute of Mining Technology, Pszczyńska 37, 44-101 Gliwice, Poland)

  • Jerzy Jagoda

    (KOMAG, Institute of Mining Technology, Pszczyńska 37, 44-101 Gliwice, Poland)

  • Paweł Kamiński

    (Faculty of Mining and Geoengineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

This article presents a proposal for a wireless diagnostic system for checking the air tightness of the ventilation network. The solution is designed to increase crew safety in underground mining plants and increase the energy efficiency of the ventube ventilation system. The system is based on sensors measuring the pressure inside the ventilation duct in relation to the barometric pressure in the immediate vicinity of the duct. The flow of diagnostic data is based on a cascade transfer. The data from the first sensor are transferred successively to the last one. Based on the prior calibration of alarm thresholds in each device, the leakage or factor influencing the increase of air flow resistance is located. The article presents the genesis of the creation and discusses the principle and purpose of the system. In the following chapters, the progress of work related to testing the system in laboratory, industrial, and underground conditions at the Velenje Premogovnik mine (Slovenia) is presented. The authors analyze the test results and indicate the directions of possible further work on improving the system. The proposed leak detection system is based on a network of pressure sensors that communicate with each other to clearly pinpoint the leak location. The system has been designed for operation in underground mining plants with limited space.

Suggested Citation

  • Michał Szelka & Mariusz Woszczyński & Jerzy Jagoda & Paweł Kamiński, 2021. "Wireless Leak Detection System as a Way to Reduce Electricity Consumption in Ventilation Ducts," Energies, MDPI, vol. 14(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3774-:d:580803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3774/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3774/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Tutak & Jarosław Brodny & Dawid Szurgacz & Leszek Sobik & Sergey Zhironkin, 2020. "The Impact of the Ventilation System on the Methane Release Hazard and Spontaneous Combustion of Coal in the Area of Exploitation—A Case Study," Energies, MDPI, vol. 13(18), pages 1-31, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Wróblewski & Wojciech Lewicki, 2021. "A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters," Energies, MDPI, vol. 14(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Qi & Li, Yi & Chen, Xianfeng, 2022. "Fire extinguishing and explosion suppression characteristics of explosion suppression system with N2/APP after methane/coal dust explosion," Energy, Elsevier, vol. 257(C).
    2. Shaofeng Wang & Sida Guo & Yalan Yang, 2023. "Complexity Study on Multi-Field Coupling Systems for Underground Coal Fires," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    3. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.
    4. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    5. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    6. Oleg Bazaluk & Orest Slabyi & Vasyl Vekeryk & Andrii Velychkovych & Liubomyr Ropyak & Vasyl Lozynskyi, 2021. "A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming," Energies, MDPI, vol. 14(12), pages 1-15, June.
    7. Adiqa Kausar Kiani & Wasim Ullah Khan & Muhammad Asif Zahoor Raja & Yigang He & Zulqurnain Sabir & Muhammad Shoaib, 2021. "Intelligent Backpropagation Networks with Bayesian Regularization for Mathematical Models of Environmental Economic Systems," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    8. Paweł Zimroz & Paweł Trybała & Adam Wróblewski & Mateusz Góralczyk & Jarosław Szrek & Agnieszka Wójcik & Radosław Zimroz, 2021. "Application of UAV in Search and Rescue Actions in Underground Mine—A Specific Sound Detection in Noisy Acoustic Signal," Energies, MDPI, vol. 14(13), pages 1-21, June.
    9. Adam Wróblewski & Arkadiusz Macek & Aleksandra Banasiewicz & Sebastian Gola & Maciej Zawiślak & Anna Janicka, 2023. "CFD Analysis of the Forced Airflow and Temperature Distribution in the Air-Conditioned Operator’s Cabin of the Stationary Rock Breaker in Underground Mine under Increasing Heat Flux," Energies, MDPI, vol. 16(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3774-:d:580803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.