IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp881-894.html
   My bibliography  Save this article

A novel cost-revenue allocation computation for the competitiveness of balancing responsible parties, including RES. Insights from the electricity market

Author

Listed:
  • Oprea, Simona-Vasilica
  • Bâra, Adela
  • Ciurea, Cristian-Eugen

Abstract

The difference between the scheduled and actual generation of electricity leads to disruption on the balancing markets that must be paid at the deficit or surplus price. To smooth and simplify the market interactions, each license holder (producer, large consumer, supplier, grid operator) must be a member of a Balancing Responsible Party (BRP). We propose an improvement of the method for transparently and equidistantly setting the imbalance, cost - revenue allocation at the level of BRPs to increase the competitiveness among them. The proposed allocation method is compared with two existing methods implemented by two representative BRPs in Romania. The novelty of our approach consists in fairly rewarding the BRP members that reduce the cost or penalizing those members that diminish the revenue using indirect cost and revenue and implementing the penalty/reward principle. In this paper, we prove that BRP members benefit from cooperating and BRP minimizes the costs of imbalances between the schedule and real-time electricity delivery. The gain of BRP members (BRPi) may vary from 19 to 226%. Furthermore, we simulate that by adjusting the initial imbalance with only 2 or 3 units (equivalent with a smaller imbalance), the costs considerably decrease by 23.7%, 35.6% respectively.

Suggested Citation

  • Oprea, Simona-Vasilica & Bâra, Adela & Ciurea, Cristian-Eugen, 2022. "A novel cost-revenue allocation computation for the competitiveness of balancing responsible parties, including RES. Insights from the electricity market," Renewable Energy, Elsevier, vol. 199(C), pages 881-894.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:881-894
    DOI: 10.1016/j.renene.2022.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812201343X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohd Chachuli, Fairuz Suzana & Mat, Sohif & Ludin, Norasikin Ahmad & Sopian, Kamaruzzaman, 2021. "Performance evaluation of renewable energy R&D activities in Malaysia," Renewable Energy, Elsevier, vol. 163(C), pages 544-560.
    2. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa, 2016. "Impacts of intermittent renewable generation on electricity system costs," Energy Policy, Elsevier, vol. 94(C), pages 411-420.
    3. Karimi, Ali & Aminifar, Farrokh & Fereidunian, Alireza & Lesani, Hamid, 2019. "Energy storage allocation in wind integrated distribution networks: An MILP-Based approach," Renewable Energy, Elsevier, vol. 134(C), pages 1042-1055.
    4. Batlle, Carlos & Mastropietro, Paolo & Rodilla, Pablo, 2020. "Redesigning residual cost allocation in electricity tariffs: A proposal to balance efficiency, equity and cost recovery," Renewable Energy, Elsevier, vol. 155(C), pages 257-266.
    5. Kaur, Amanpreet & Nonnenmacher, Lukas & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Benefits of solar forecasting for energy imbalance markets," Renewable Energy, Elsevier, vol. 86(C), pages 819-830.
    6. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    7. van der Veen, Reinier A.C. & Abbasy, Alireza & Hakvoort, Rudi A., 2012. "Agent-based analysis of the impact of the imbalance pricing mechanism on market behavior in electricity balancing markets," Energy Economics, Elsevier, vol. 34(4), pages 874-881.
    8. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    9. Uzar, Umut, 2020. "Political economy of renewable energy: Does institutional quality make a difference in renewable energy consumption?," Renewable Energy, Elsevier, vol. 155(C), pages 591-603.
    10. Poplavskaya, Ksenia & de Vries, Laurens, 2019. "Distributed energy resources and the organized balancing market: A symbiosis yet? Case of three European balancing markets," Energy Policy, Elsevier, vol. 126(C), pages 264-276.
    11. Iria, José & Soares, Filipe & Matos, Manuel, 2018. "Optimal supply and demand bidding strategy for an aggregator of small prosumers," Applied Energy, Elsevier, vol. 213(C), pages 658-669.
    12. Oprea, Simona-Vasilica & Bâra, Adela, 2021. "Devising a trading mechanism with a joint price adjustment for local electricity markets using blockchain. Insights for policy makers," Energy Policy, Elsevier, vol. 152(C).
    13. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    14. Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2015. "Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level," Renewable Energy, Elsevier, vol. 75(C), pages 541-549.
    15. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2017. "How to benefit from a common European electricity market design," Energy Policy, Elsevier, vol. 101(C), pages 629-643.
    16. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    17. Leirpoll, Malene Eldegard & Næss, Jan Sandstad & Cavalett, Otavio & Dorber, Martin & Hu, Xiangping & Cherubini, Francesco, 2021. "Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland," Renewable Energy, Elsevier, vol. 168(C), pages 45-56.
    18. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    19. Cherrelle Eid & Paul Codani & Yannick Perez & Javier Reneses & Rudi Hakvoort, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Post-Print hal-01792419, HAL.
    20. Newbery, David & Strbac, Goran & Viehoff, Ivan, 2016. "The benefits of integrating European electricity markets," Energy Policy, Elsevier, vol. 94(C), pages 253-263.
    21. Flinkerbusch, Kai & Heuterkes, Michael, 2010. "Cost reduction potentials in the German market for balancing power," Energy Policy, Elsevier, vol. 38(8), pages 4712-4718, August.
    22. Hamid Sharafi & Farhad Hosseinzadeh Lotfi & Gholam Reza Jahanshahloo & Somayeh Razipour-GhalehJough, 2020. "Fair Allocation Fixed Cost Using Cross-Efficiency Based on Pareto Concept," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-23, January.
    23. van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2016. "The electricity balancing market: Exploring the design challenge," Utilities Policy, Elsevier, vol. 43(PB), pages 186-194.
    24. Vargas, Uriel & Lazaroiu, George Cristian & Ramirez, Abner, 2021. "Stability assessment of a stand-alone wind-photovoltaic-battery system via Floquet Theory," Renewable Energy, Elsevier, vol. 171(C), pages 149-158.
    25. Vandezande, Leen & Meeus, Leonardo & Belmans, Ronnie & Saguan, Marcelo & Glachant, Jean-Michel, 2010. "Well-functioning balancing markets: A prerequisite for wind power integration," Energy Policy, Elsevier, vol. 38(7), pages 3146-3154, July.
    26. Scherer, Marc & Haubensak, Oliver & Staake, Thorsten, 2015. "Assessing distorted trading incentives of balance responsible parties based on the example of the Swiss power system," Energy Policy, Elsevier, vol. 86(C), pages 792-801.
    27. Simona-Vasilica Oprea & Adela Bâra & George Adrian Ifrim, 2021. "Optimizing the Electricity Consumption with a High Degree of Flexibility Using a Dynamic Tariff and Stackelberg Game," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 151-182, July.
    28. Iria, José & Soares, Filipe, 2019. "Real-time provision of multiple electricity market products by an aggregator of prosumers," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Ząbkowski & Krzysztof Gajowniczek & Grzegorz Matejko & Jacek Brożyna & Grzegorz Mentel & Małgorzata Charytanowicz & Jolanta Jarnicka & Anna Olwert & Weronika Radziszewska, 2023. "Changing Electricity Tariff—An Empirical Analysis Based on Commercial Customers’ Data from Poland," Energies, MDPI, vol. 16(19), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    3. Gianfreda, Angelica & Parisio, Lucia & Pelagatti, Matteo, 2018. "A review of balancing costs in Italy before and after RES introduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 549-563.
    4. Prakash, Abhijith & Bruce, Anna & MacGill, Iain, 2022. "Insights on designing effective and efficient frequency control arrangements from the Australian National Electricity Market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Sirin, Selahattin Murat & Yilmaz, Berna N., 2021. "The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market," Energy Policy, Elsevier, vol. 151(C).
    7. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    8. Poplavskaya, Ksenia & de Vries, Laurens, 2019. "Distributed energy resources and the organized balancing market: A symbiosis yet? Case of three European balancing markets," Energy Policy, Elsevier, vol. 126(C), pages 264-276.
    9. Tang, Hong & Wang, Shengwei, 2022. "Multi-level optimal dispatch strategy and profit-sharing mechanism for unlocking energy flexibilities of non-residential building clusters in electricity markets of multiple flexibility services," Renewable Energy, Elsevier, vol. 201(P1), pages 35-45.
    10. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Iria, José & Scott, Paul & Attarha, Ahmad, 2020. "Network-constrained bidding optimization strategy for aggregators of prosumers," Energy, Elsevier, vol. 207(C).
    12. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    13. Martina Arosio & Davide Falabretti, 2023. "DER Participation in Ancillary Services Market: An Analysis of Current Trends and Future Opportunities," Energies, MDPI, vol. 16(5), pages 1-21, March.
    14. Qin, Zhijun & Mo, Yuhong & Liu, Hui & Zhang, Yihui, 2021. "Operational flexibility enhancements using mobile energy storage in day-ahead electricity market by game-theoretic approach," Energy, Elsevier, vol. 232(C).
    15. Poplavskaya, Ksenia & Lago, Jesus & Strömer, Stefan & de Vries, Laurens, 2021. "Making the most of short-term flexibility in the balancing market: Opportunities and challenges of voluntary bids in the new balancing market design," Energy Policy, Elsevier, vol. 158(C).
    16. Christos Roumkos & Pandelis N. Biskas & Ilias G. Marneris, 2022. "Integration of European Electricity Balancing Markets," Energies, MDPI, vol. 15(6), pages 1-26, March.
    17. Koch, Christopher & Hirth, Lion, 2019. "Short-term electricity trading for system balancing: An empirical analysis of the role of intraday trading in balancing Germany's electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Wu, Zhaoyuan & Zhou, Ming & Li, Gengyin & Zhao, Tong & Zhang, Yan & Liu, Xiaojuan, 2020. "Interaction between balancing market design and market behaviour of wind power producers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. Fridgen, Gilbert & Keller, Robert & Thimmel, Markus & Wederhake, Lars, 2017. "Shifting load through space–The economics of spatial demand side management using distributed data centers," Energy Policy, Elsevier, vol. 109(C), pages 400-413.
    20. Karl-Martin Ehrhart & Fabian Ocker, 2021. "Design and regulation of balancing power auctions: an integrated market model approach," Journal of Regulatory Economics, Springer, vol. 60(1), pages 55-73, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:881-894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.