IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp1042-1055.html
   My bibliography  Save this article

Energy storage allocation in wind integrated distribution networks: An MILP-Based approach

Author

Listed:
  • Karimi, Ali
  • Aminifar, Farrokh
  • Fereidunian, Alireza
  • Lesani, Hamid

Abstract

Due to the unpredictable nature of wind energy and non-coincidence between wind units output power and demand peak load, wind units is deemed as an unreliable source of energy. In order to compensate for the short-term fluctuation of wind energy, deployment of energy storage (ES) units in various types have been introduced as a viable solution. This paper develops a stochastic mathematical model for the optimal allocation of ES units in active distribution networks (ADNs) in order to reduce wind power spillage and load curtailment while managing congestion and voltages deviation. Nonlinearities of the original formulation are converted to linear equivalents and the final model lies within the computationally tractable mixed-integer linear programming (MILP) fashion. The IEEE 33-bus 12.66 kV radial distribution test system is utilized to illustrate the effectiveness of the proposed methodology. It was found that the rated power and capacity of ES units are depends on wind units' location and penetration level, in such a way that ES units are allocated near wind units to absorb excessive wind energy as much as possible. Furthermore, the results indicate ES units are useful for other purposes such as voltage management issue even if the wind units are not allocated.

Suggested Citation

  • Karimi, Ali & Aminifar, Farrokh & Fereidunian, Alireza & Lesani, Hamid, 2019. "Energy storage allocation in wind integrated distribution networks: An MILP-Based approach," Renewable Energy, Elsevier, vol. 134(C), pages 1042-1055.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1042-1055
    DOI: 10.1016/j.renene.2018.11.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wais, Piotr, 2017. "Two and three-parameter Weibull distribution in available wind power analysis," Renewable Energy, Elsevier, vol. 103(C), pages 15-29.
    2. Ikegami, Takashi & Urabe, Chiyori T. & Saitou, Tetsuo & Ogimoto, Kazuhiko, 2018. "Numerical definitions of wind power output fluctuations for power system operations," Renewable Energy, Elsevier, vol. 115(C), pages 6-15.
    3. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    4. Motalleb, Mahdi & Reihani, Ehsan & Ghorbani, Reza, 2016. "Optimal placement and sizing of the storage supporting transmission and distribution networks," Renewable Energy, Elsevier, vol. 94(C), pages 651-659.
    5. Novacheck, Joshua & Johnson, Jeremiah X., 2017. "Diversifying wind power in real power systems," Renewable Energy, Elsevier, vol. 106(C), pages 177-185.
    6. Carleton Coffrin & Pascal Van Hentenryck, 2014. "A Linear-Programming Approximation of AC Power Flows," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 718-734, November.
    7. Fossati, Juan P. & Galarza, Ainhoa & Martín-Villate, Ander & Fontán, Luis, 2015. "A method for optimal sizing energy storage systems for microgrids," Renewable Energy, Elsevier, vol. 77(C), pages 539-549.
    8. Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jinghua & Lu, Bo & Wang, Zhibang & Zhu, Mengshu, 2021. "Bi-level optimal planning model for energy storage systems in a virtual power plant," Renewable Energy, Elsevier, vol. 165(P2), pages 77-95.
    2. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    3. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    4. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Odiase, Friday O. & Hewitt, Neil, 2022. "Value of demand flexibility for managing wind energy constraint and curtailment," Renewable Energy, Elsevier, vol. 190(C), pages 487-500.
    5. Jieran Feng & Hao Zhou, 2022. "Bi-Level Optimal Capacity Planning of Load-Side Electric Energy Storage Using an Emission-Considered Carbon Incentive Mechanism," Energies, MDPI, vol. 15(13), pages 1-18, June.
    6. Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Fernando Rueda-Martinez & Gerardo Alcalá & Alberto-Jesus Perea-Moreno, 2019. "Wind Power Cogeneration to Reduce Peak Electricity Demand in Mexican States Along the Gulf of Mexico," Energies, MDPI, vol. 12(12), pages 1-22, June.
    7. Chien-Heng Chou & Sa Ly Ngo & Phung Phi Tran, 2023. "Renewable Energy Integration for Sustainable Economic Growth: Insights and Challenges via Bibliometric Analysis," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    8. Oprea, Simona-Vasilica & Bâra, Adela & Ciurea, Cristian-Eugen, 2022. "A novel cost-revenue allocation computation for the competitiveness of balancing responsible parties, including RES. Insights from the electricity market," Renewable Energy, Elsevier, vol. 199(C), pages 881-894.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nayeem Chowdhury & Fabrizio Pilo & Giuditta Pisano, 2020. "Optimal Energy Storage System Positioning and Sizing with Robust Optimization," Energies, MDPI, vol. 13(3), pages 1-20, January.
    2. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    3. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    4. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Benjamin Matthiss & Arghavan Momenifarahani & Jann Binder, 2021. "Storage Placement and Sizing in a Distribution Grid with High PV Generation," Energies, MDPI, vol. 14(2), pages 1-10, January.
    6. Uddin, Moslem & Romlie, Mohd Fakhizan & Abdullah, Mohd Faris & Abd Halim, Syahirah & Abu Bakar, Ab Halim & Chia Kwang, Tan, 2018. "A review on peak load shaving strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3323-3332.
    7. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    8. Kirchbacher, Florian & Biegger, Philipp & Miltner, Martin & Lehner, Markus & Harasek, Michael, 2018. "A new methanation and membrane based power-to-gas process for the direct integration of raw biogas – Feasability and comparison," Energy, Elsevier, vol. 146(C), pages 34-46.
    9. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    10. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    11. Andrea Amado & Koji Kotani & Makoto Kakinaka & Shunsuke Managi, 2023. "Carbon tax for cleaner-energy transition: A vignette experiment in Japan," Working Papers SDES-2023-6, Kochi University of Technology, School of Economics and Management, revised Oct 2023.
    12. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    13. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    14. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    15. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    16. Lukas Wienholt & Ulf Philipp Müller & Julian Bartels, 2018. "Optimal Sizing and Spatial Allocation of Storage Units in a High-Resolution Power System Model," Energies, MDPI, vol. 11(12), pages 1-17, December.
    17. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    19. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    20. Neumann, Fabian & Hagenmeyer, Veit & Brown, Tom, 2022. "Assessments of linear power flow and transmission loss approximations in coordinated capacity expansion problems," Applied Energy, Elsevier, vol. 314(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1042-1055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.