IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp646-655.html
   My bibliography  Save this article

Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage

Author

Listed:
  • Khalid, Muhammad
  • Ahmadi, Abdollah
  • Savkin, Andrey V.
  • Agelidis, Vassilios G.

Abstract

This paper presents a methodology to minimize the total cost of buying power from different energy producers including renewable energy generations particularly within the context of a microgrid. The proposed idea is primarily based on the controlled operation of a battery energy storage system (BESS) in the presence of practical system constraints coupled with our proposed cost optimization algorithm. The complex optimization problem with constraints has been solved using the well-known concept of dynamic programming. The methodology has been assessed using actual power and price data from six different power generation sites and cost reduction has been calculated for a number of BESSs by varying their energy and power capacities. Twofold benefits of the proposed methodology lie in minimizing the total cost along with the constraint-based efficient operation of the BESS. Simulation results depict that the given power demand at a particular region can be fulfilled properly at all times using a BESS and multiple power generation.

Suggested Citation

  • Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:646-655
    DOI: 10.1016/j.renene.2016.05.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cosentino, Valentina & Favuzza, Salvatore & Graditi, Giorgio & Ippolito, Mariano Giuseppe & Massaro, Fabio & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2012. "Smart renewable generation for an islanded system. Technical and economic issues of future scenarios," Energy, Elsevier, vol. 39(1), pages 196-204.
    2. Ippolito, M.G. & Di Silvestre, M.L. & Riva Sanseverino, E. & Zizzo, G. & Graditi, G., 2014. "Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios," Energy, Elsevier, vol. 64(C), pages 648-662.
    3. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    4. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    5. Khalid, M. & Savkin, A.V., 2010. "A model predictive control approach to the problem of wind power smoothing with controlled battery storage," Renewable Energy, Elsevier, vol. 35(7), pages 1520-1526.
    6. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    7. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    8. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    9. Zahedi, A., 2011. "Maximizing solar PV energy penetration using energy storage technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 866-870, January.
    10. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
    11. Provata, Elena & Kolokotsa, Dionysia & Papantoniou, Sotiris & Pietrini, Maila & Giovannelli, Antonio & Romiti, Gino, 2015. "Development of optimization algorithms for the Leaf Community microgrid," Renewable Energy, Elsevier, vol. 74(C), pages 782-795.
    12. Fossati, Juan P. & Galarza, Ainhoa & Martín-Villate, Ander & Fontán, Luis, 2015. "A method for optimal sizing energy storage systems for microgrids," Renewable Energy, Elsevier, vol. 77(C), pages 539-549.
    13. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    14. Breton, Simon-Philippe & Moe, Geir, 2009. "Status, plans and technologies for offshore wind turbines in Europe and North America," Renewable Energy, Elsevier, vol. 34(3), pages 646-654.
    15. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shabib Shahid & Saifullah Shafiq & Bilal Khan & Ali T. Al-Awami & Muhammad Omair Butt, 2021. "A Machine Learning-Based Communication-Free PV Controller for Voltage Regulation," Sustainability, MDPI, vol. 13(21), pages 1-22, November.
    2. Oluwaseun Olanrewaju Akinte & Boonyang Plangklang & Boonrit Prasartkaew & Taiwo Samuel Aina, 2023. "Energy Storage Management of a Solar Photovoltaic–Biomass Hybrid Power System," Energies, MDPI, vol. 16(13), pages 1-31, July.
    3. Wenhao Zhuo & Andrey V. Savkin, 2019. "Profit Maximizing Control of a Microgrid with Renewable Generation and BESS Based on a Battery Cycle Life Model and Energy Price Forecasting," Energies, MDPI, vol. 12(15), pages 1-17, July.
    4. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    5. Saqib Iqbal & Kamyar Mehran, 2022. "A Day-Ahead Energy Management for Multi MicroGrid System to Optimize the Energy Storage Charge and Grid Dependency—A Comparative Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
    6. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    7. Chaudhary, Priyanka & Rizwan, M., 2018. "Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system," Renewable Energy, Elsevier, vol. 118(C), pages 928-946.
    8. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.
    9. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    10. Liu, Ye & Wu, Xiaogang & Du, Jiuyu & Song, Ziyou & Wu, Guoliang, 2020. "Optimal sizing of a wind-energy storage system considering battery life," Renewable Energy, Elsevier, vol. 147(P1), pages 2470-2483.
    11. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Álvarez-Bel, Carlos, 2017. "An optimisation algorithm for distributed energy resources management in micro-scale energy hubs," Energy, Elsevier, vol. 132(C), pages 126-135.
    12. Ali Ahmad & Syed Abdul Rahman Kashif & Arslan Ashraf & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "Coordinated Economic Operation of Hydrothermal Units with HVDC Link Based on Lagrange Multipliers," Mathematics, MDPI, vol. 11(7), pages 1-19, March.
    13. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    14. Abdullah Al Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2020. "Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System," Energies, MDPI, vol. 13(11), pages 1-21, June.
    15. Wenhao Zhuo & Andrey V. Savkin & Ke Meng, 2019. "Decentralized Optimal Control of a Microgrid with Solar PV, BESS and Thermostatically Controlled Loads," Energies, MDPI, vol. 12(11), pages 1-15, June.
    16. Surroop, Dinesh & Raghoo, Pravesh, 2017. "Energy landscape in Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 688-694.
    17. Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
    18. Karimi, Ali & Aminifar, Farrokh & Fereidunian, Alireza & Lesani, Hamid, 2019. "Energy storage allocation in wind integrated distribution networks: An MILP-Based approach," Renewable Energy, Elsevier, vol. 134(C), pages 1042-1055.
    19. Chongxin Huang & Dong Yue & Song Deng & Jun Xie, 2017. "Optimal Scheduling of Microgrid with Multiple Distributed Resources Using Interval Optimization," Energies, MDPI, vol. 10(3), pages 1-23, March.
    20. Wu, Chuanshen & Gao, Shan & Liu, Yu & Song, Tiancheng E. & Han, Haiteng, 2021. "A model predictive control approach in microgrid considering multi-uncertainty of electric vehicles," Renewable Energy, Elsevier, vol. 163(C), pages 1385-1396.
    21. Ahmed S. Menesy & Hamdy M. Sultan & Ibrahim O. Habiballah & Hasan Masrur & Kaisar R. Khan & Muhammad Khalid, 2023. "Optimal Configuration of a Hybrid Photovoltaic/Wind Turbine/Biomass/Hydro-Pumped Storage-Based Energy System Using a Heap-Based Optimization Algorithm," Energies, MDPI, vol. 16(9), pages 1-26, April.
    22. Carlos Roldán-Porta & Carlos Roldán-Blay & Guillermo Escrivá-Escrivá & Eduardo Quiles, 2019. "Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids," Sustainability, MDPI, vol. 11(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    2. Arbabzadeh, Maryam & Johnson, Jeremiah X. & De Kleine, Robert & Keoleian, Gregory A., 2015. "Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration," Applied Energy, Elsevier, vol. 146(C), pages 397-408.
    3. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    4. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    5. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    6. Graditi, G. & Ippolito, M.G. & Telaretti, E. & Zizzo, G., 2016. "Technical and economical assessment of distributed electrochemical storages for load shifting applications: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 515-523.
    7. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Castro-Gil, Manuel, 2012. "Profitability analysis of grid-connected photovoltaic facilities for household electricity self-sufficiency," Energy Policy, Elsevier, vol. 51(C), pages 749-764.
    8. Cole, Wesley & Frew, Bethany & Gagnon, Pieter & Reimers, Andrew & Zuboy, Jarett & Margolis, Robert, 2018. "Envisioning a low-cost solar future: Exploring the potential impact of Achieving the SunShot 2030 targets for photovoltaics," Energy, Elsevier, vol. 155(C), pages 690-704.
    9. Janko, Samantha A. & Arnold, Michael R. & Johnson, Nathan G., 2016. "Implications of high-penetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market," Applied Energy, Elsevier, vol. 180(C), pages 37-51.
    10. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    11. Urbina, Antonio, 2014. "Solar electricity in a changing environment: The case of Spain," Renewable Energy, Elsevier, vol. 68(C), pages 264-269.
    12. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    13. Sandoval, Diego & Goffin, Philippe & Leibundgut, Hansjürg, 2017. "How low exergy buildings and distributed electricity storage can contribute to flexibility within the demand side," Applied Energy, Elsevier, vol. 187(C), pages 116-127.
    14. Nunes, Pedro & Farias, Tiago & Brito, Miguel C., 2015. "Day charging electric vehicles with excess solar electricity for a sustainable energy system," Energy, Elsevier, vol. 80(C), pages 263-274.
    15. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    16. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    17. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    18. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    19. Ferruzzi, Gabriella & Cervone, Guido & Delle Monache, Luca & Graditi, Giorgio & Jacobone, Francesca, 2016. "Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production," Energy, Elsevier, vol. 106(C), pages 194-202.
    20. Wooyoung Jeon & Chul-Yong Lee, 2019. "Estimating the Cost of Solar Generation Uncertainty and the Impact of Collocated Energy Storage: The Case of Korea," Sustainability, MDPI, vol. 11(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:646-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.