IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5122-d1185518.html
   My bibliography  Save this article

Energy Storage Management of a Solar Photovoltaic–Biomass Hybrid Power System

Author

Listed:
  • Oluwaseun Olanrewaju Akinte

    (Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand)

  • Boonyang Plangklang

    (Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand)

  • Boonrit Prasartkaew

    (Department of Mechanical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand)

  • Taiwo Samuel Aina

    (Department of Computer Science and Technology, University of Bedfordshire, Vicarage St., Luton LU1 3JU, UK)

Abstract

Remote areas that are not within the maximum breakeven grid extension distance limit will not be economical or feasible for grid connections to provide electrical power to the community (remote area). An integrated autonomous sustainable energy system is a feasible option. We worked on a novel multi optimization electrical energy assessment/power management system of a microgrid network that adopted combined dispatch, load-following, and cycle-charging strategies (control system) that acted as a power interface module over the hybrid configuration of energy sources (grid network/downdraft biomass generator/solar photovoltaic), thermal load controller-boiler systems, and hybrid energy-storage technologies (lithium, iron flow, sodium sulfur, and flywheel) to enable the microgrid network to operate in the island (off grid), grid, and island-able (ability to isolate itself when it is connected to the grid network) modes efficiently and effectively. An optimal multitask control algorithm and the storage units of modeled power generation sources were executed with the HOMER software application to improve the energy system’s efficiency, promote effective storage management, minimize energy loss, and improve the lifespan of the microgrid network. The integrated energy system can work for both rural and urban areas.

Suggested Citation

  • Oluwaseun Olanrewaju Akinte & Boonyang Plangklang & Boonrit Prasartkaew & Taiwo Samuel Aina, 2023. "Energy Storage Management of a Solar Photovoltaic–Biomass Hybrid Power System," Energies, MDPI, vol. 16(13), pages 1-31, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5122-:d:1185518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muzaffar, Aqib & Ahamed, M. Basheer & Deshmukh, Kalim & Thirumalai, Jagannathan, 2019. "A review on recent advances in hybrid supercapacitors: Design, fabrication and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 123-145.
    2. Upadhyay, Subho & Sharma, M.P., 2016. "Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India," Energy, Elsevier, vol. 94(C), pages 352-366.
    3. Patel, Alpesh M. & Singal, Sunil Kumar, 2019. "Optimal component selection of integrated renewable energy system for power generation in stand-alone applications," Energy, Elsevier, vol. 175(C), pages 481-504.
    4. Durlinger, Bart & Reinders, Angèle & Toxopeus, Marten, 2012. "A comparative life cycle analysis of low power PV lighting products for rural areas in South East Asia," Renewable Energy, Elsevier, vol. 41(C), pages 96-104.
    5. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    6. Rodríguez-Gallegos, Carlos D. & Gandhi, Oktoviano & Bieri, Monika & Reindl, Thomas & Panda, S.K., 2018. "A diesel replacement strategy for off-grid systems based on progressive introduction of PV and batteries: An Indonesian case study," Applied Energy, Elsevier, vol. 229(C), pages 1218-1232.
    7. Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polamarasetty P Kumar & Ramakrishna S. S. Nuvvula & Md. Alamgir Hossain & SK. A. Shezan & Vishnu Suresh & Michal Jasinski & Radomir Gono & Zbigniew Leonowicz, 2022. "Optimal Operation of an Integrated Hybrid Renewable Energy System with Demand-Side Management in a Rural Context," Energies, MDPI, vol. 15(14), pages 1-50, July.
    2. Ahmed S. Menesy & Hamdy M. Sultan & Ibrahim O. Habiballah & Hasan Masrur & Kaisar R. Khan & Muhammad Khalid, 2023. "Optimal Configuration of a Hybrid Photovoltaic/Wind Turbine/Biomass/Hydro-Pumped Storage-Based Energy System Using a Heap-Based Optimization Algorithm," Energies, MDPI, vol. 16(9), pages 1-26, April.
    3. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Álvarez-Bel, Carlos, 2017. "An optimisation algorithm for distributed energy resources management in micro-scale energy hubs," Energy, Elsevier, vol. 132(C), pages 126-135.
    4. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    5. Rodríguez-Gallegos, Carlos D. & Vinayagam, Lokesh & Gandhi, Oktoviano & Yagli, Gokhan Mert & Alvarez-Alvarado, Manuel S. & Srinivasan, Dipti & Reindl, Thomas & Panda, S.K., 2021. "Novel forecast-based dispatch strategy optimization for PV hybrid systems in real time," Energy, Elsevier, vol. 222(C).
    6. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    7. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    9. Yang, Ting & Pen, Haibo & Wang, Dan & Wang, Zhaoxia, 2016. "Harmonic analysis in integrated energy system based on compressed sensing," Applied Energy, Elsevier, vol. 165(C), pages 583-591.
    10. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Chenchen Ji & Haonan Cui & Hongyu Mi & Shengchun Yang, 2021. "Applications of 2D MXenes for Electrochemical Energy Conversion and Storage," Energies, MDPI, vol. 14(23), pages 1-23, December.
    12. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    13. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    14. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.
    15. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.
    16. Polamarasetty P Kumar & Akhlaqur Rahman & Ramakrishna S. S. Nuvvula & Ilhami Colak & S. M. Muyeen & Sk. A. Shezan & G. M. Shafiullah & Md. Fatin Ishraque & Md. Alamgir Hossain & Faisal Alsaif & Rajvik, 2023. "Using Energy Conservation-Based Demand-Side Management to Optimize an Off-Grid Integrated Renewable Energy System Using Different Battery Technologies," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    17. Wenhao Zhuo & Andrey V. Savkin, 2019. "Profit Maximizing Control of a Microgrid with Renewable Generation and BESS Based on a Battery Cycle Life Model and Energy Price Forecasting," Energies, MDPI, vol. 12(15), pages 1-17, July.
    18. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    19. Jian Wang & Qianggang Wang & Niancheng Zhou & Yuan Chi, 2017. "A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction," Energies, MDPI, vol. 10(12), pages 1-22, November.
    20. Wang, Bin & Wang, Chaohui & Wang, Zhiyu & Ni, Siliang & Yang, Yixin & Tian, Pengyu, 2023. "Adaptive state of energy evaluation for supercapacitor in emergency power system of more-electric aircraft," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5122-:d:1185518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.