IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p3015-d370260.html
   My bibliography  Save this article

Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System

Author

Listed:
  • Abdullah Al Shereiqi

    (Department of Electrical and Computer Engineering, Sultan Qaboos University, P.O. 33, Al-Khoudh, Muscat-123, Oman)

  • Amer Al-Hinai

    (Department of Electrical and Computer Engineering, Sultan Qaboos University, P.O. 33, Al-Khoudh, Muscat-123, Oman
    Sustainable Energy Research Center, Sultan Qaboos University, P.O. 54, Al-Khoudh, Muscat-123, Oman)

  • Mohammed Albadi

    (Department of Electrical and Computer Engineering, Sultan Qaboos University, P.O. 33, Al-Khoudh, Muscat-123, Oman)

  • Rashid Al-Abri

    (Department of Electrical and Computer Engineering, Sultan Qaboos University, P.O. 33, Al-Khoudh, Muscat-123, Oman)

Abstract

A novel optimization strategy is proposed to achieve a reliable hybrid plant of wind, solar, and battery (HWSPS). This strategy’s purpose is to reduce the power losses in a wind farm and at the same time reduce the fluctuations in the output of HWSPS generation. In addition, the proposed strategy is different from previous studies in that it does not involve a load demand profile. The process of defining the HWSPS capacity is carried out in two main stages. In the first stage, an optimal wind farm is determined using the genetic algorithm subject to site dimensions and spacing between the turbines, taking Jensen’s wake effect model into consideration to eliminate the power losses due to the wind turbines’ layout. In the second stage, a numerical iterative algorithm is deployed to get the optimal combination of photovoltaic and energy storage system sizes in the search space based on the wind reference power generated by the moving average. The reliability indices and cost are the basis for obtaining the optimal combination of photovoltaic and energy storage system according to a contribution factor with 100 different configurations. A case study in Thumrait in the Sultanate of Oman is used to verify the usefulness of the proposed optimal sizing approach.

Suggested Citation

  • Abdullah Al Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2020. "Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System," Energies, MDPI, vol. 13(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3015-:d:370260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/3015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/3015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    2. Jakhrani, Abdul Qayoom & Othman, Al-Khalid & Rigit, Andrew Ragai Henry & Samo, Saleem Raza & Kamboh, Shakeel Ahmed, 2012. "A novel analytical model for optimal sizing of standalone photovoltaic systems," Energy, Elsevier, vol. 46(1), pages 675-682.
    3. Howlader, Abdul Motin & Urasaki, Naomitsu & Yona, Atsushi & Senjyu, Tomonobu & Saber, Ahmed Yousuf, 2013. "A review of output power smoothing methods for wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 135-146.
    4. Qiongjie Dai & Jicheng Liu & Qiushuang Wei, 2019. "Optimal Photovoltaic/Battery Energy Storage/Electric Vehicle Charging Station Design Based on Multi-Agent Particle Swarm Optimization Algorithm," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    5. Li, Chong & Ge, Xinfeng & Zheng, Yuan & Xu, Chang & Ren, Yan & Song, Chenguang & Yang, Chunxia, 2013. "Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China," Energy, Elsevier, vol. 55(C), pages 263-272.
    6. Malheiro, André & Castro, Pedro M. & Lima, Ricardo M. & Estanqueiro, Ana, 2015. "Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems," Renewable Energy, Elsevier, vol. 83(C), pages 646-657.
    7. Rajkumar, R.K. & Ramachandaramurthy, V.K. & Yong, B.L. & Chia, D.B., 2011. "Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy," Energy, Elsevier, vol. 36(8), pages 5148-5153.
    8. Siyu Tao & Qingshan Xu & Andrés Feijóo & Stefanie Kuenzel & Neeraj Bokde, 2019. "Integrated Wind Farm Power Curve and Power Curve Distribution Function Considering the Wake Effect and Terrain Gradient," Energies, MDPI, vol. 12(13), pages 1-14, June.
    9. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    10. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    11. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    12. Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
    13. Song, M.X. & Chen, K. & Zhang, X. & Wang, J., 2015. "The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain," Energy, Elsevier, vol. 80(C), pages 567-574.
    14. Hina Fathima A & Kaliannan Palanisamy & Sanjeevikumar Padmanaban & Umashankar Subramaniam, 2018. "Intelligence-Based Battery Management and Economic Analysis of an Optimized Dual-Vanadium Redox Battery (VRB) for a Wind-PV Hybrid System," Energies, MDPI, vol. 11(10), pages 1-18, October.
    15. Upadhyay, Subho & Sharma, M.P., 2014. "A review on configurations, control and sizing methodologies of hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 47-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanpin Li & Huiliang Wang & Zichao Zhang & Huawei Li & Xiaoli Wang & Qifan Zhang & Tong Zhou & Peng Zhang & Fengxiang Chang, 2023. "Optimal Scheduling of the Wind-Photovoltaic-Energy Storage Multi-Energy Complementary System Considering Battery Service Life," Energies, MDPI, vol. 16(13), pages 1-17, June.
    2. Ludmil Stoyanov & Ivan Bachev & Zahari Zarkov & Vladimir Lazarov & Gilles Notton, 2021. "Multivariate Analysis of a Wind–PV-Based Water Pumping Hybrid System for Irrigation Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    3. Edisson Villa-Ávila & Paul Arévalo & Roque Aguado & Danny Ochoa-Correa & Vinicio Iñiguez-Morán & Francisco Jurado & Marcos Tostado-Véliz, 2023. "Enhancing Energy Power Quality in Low-Voltage Networks Integrating Renewable Energy Generation: A Case Study in a Microgrid Laboratory," Energies, MDPI, vol. 16(14), pages 1-23, July.
    4. Abdullah Al-Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2021. "Optimal Sizing of Hybrid Wind-Solar Power Systems to Suppress Output Fluctuation," Energies, MDPI, vol. 14(17), pages 1-16, August.
    5. Mostafa Bakhtvar & Amer Al-Hinai, 2021. "Robust Operation of Hybrid Solar–Wind Power Plant with Battery Energy Storage System," Energies, MDPI, vol. 14(13), pages 1-18, June.
    6. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    2. Nadjemi, O. & Nacer, T. & Hamidat, A. & Salhi, H., 2017. "Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1352-1365.
    3. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    4. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    5. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    6. Ghaithan, Ahmed M. & Al-Hanbali, Ahmad & Mohammed, Awsan & Attia, Ahmed M. & Saleh, Haitham & Alsawafy, Omar, 2021. "Optimization of a solar-wind- grid powered desalination system in Saudi Arabia," Renewable Energy, Elsevier, vol. 178(C), pages 295-306.
    7. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    8. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    10. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    11. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    12. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    13. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Rasheed, Nadia, 2016. "Wind farm layout optimization using area dimensions and definite point selection techniques," Renewable Energy, Elsevier, vol. 88(C), pages 154-163.
    14. Galindo Noguera, Ana Lisbeth & Mendoza Castellanos, Luis Sebastian & Silva Lora, Electo Eduardo & Melian Cobas, Vladimir Rafael, 2018. "Optimum design of a hybrid diesel-ORC / photovoltaic system using PSO: Case study for the city of Cujubim, Brazil," Energy, Elsevier, vol. 142(C), pages 33-45.
    15. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    16. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    17. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    18. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    19. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3015-:d:370260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.