IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v80y2015icp567-574.html
   My bibliography  Save this article

The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain

Author

Listed:
  • Song, M.X.
  • Chen, K.
  • Zhang, X.
  • Wang, J.

Abstract

Wind farm micro-siting is to determine the optimal positions of wind turbines within the wind farm, with the target of maximizing total power output or profit. This paper studies the performance of the lazy greedy algorithm on optimization of wind turbine positions above complex terrain. Instead of the traditional linear models, computational fluid dynamics and virtual particle wake flow model are employed in the present study for a more accurate evaluation of wind energy distribution and wind power output of wind farm on complex terrain. The validity of the submodular property used by the lazy greedy algorithm is discussed for the wind farm micro-siting optimization problem. By conducting the numerical tests, results demonstrate that the combination of the lazy greedy algorithm and the virtual particle wake model is effective in optimizing wind turbine positioning on complex terrain, for it produces better solution in less time comparing to the previous bionic method.

Suggested Citation

  • Song, M.X. & Chen, K. & Zhang, X. & Wang, J., 2015. "The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain," Energy, Elsevier, vol. 80(C), pages 567-574.
  • Handle: RePEc:eee:energy:v:80:y:2015:i:c:p:567-574
    DOI: 10.1016/j.energy.2014.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421401370X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albadi, M.H. & El-Saadany, E.F., 2010. "Optimum turbine-site matching," Energy, Elsevier, vol. 35(9), pages 3593-3602.
    2. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2012. "Wake flow model of wind turbine using particle simulation," Renewable Energy, Elsevier, vol. 41(C), pages 185-190.
    3. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2013. "Bionic optimization for micro-siting of wind farm on complex terrain," Renewable Energy, Elsevier, vol. 50(C), pages 551-557.
    4. González, J. Serrano & Rodríguez, Á.G. González & Mora, J. Castro & Burgos Payán, M. & Santos, J. Riquelme, 2011. "Overall design optimization of wind farms," Renewable Energy, Elsevier, vol. 36(7), pages 1973-1982.
    5. González, Javier Serrano & Gonzalez Rodriguez, Angel G. & Mora, José Castro & Santos, Jesús Riquelme & Payan, Manuel Burgos, 2010. "Optimization of wind farm turbines layout using an evolutive algorithm," Renewable Energy, Elsevier, vol. 35(8), pages 1671-1681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, MengXuan & Wu, BingHeng & Chen, Kai & Zhang, Xing & Wang, Jun, 2016. "Simulating the wake flow effect of wind turbines on velocity and turbulence using particle random walk method," Energy, Elsevier, vol. 116(P1), pages 583-591.
    2. Song, Mengxuan & Chen, Kai & Zhang, Xing & Wang, Jun, 2016. "Optimization of wind turbine micro-siting for reducing the sensitivity of power generation to wind direction," Renewable Energy, Elsevier, vol. 85(C), pages 57-65.
    3. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2018. "Numerical workflow for 3D shape optimization and synthesis of vertical-axis wind turbines for specified operating regimes," Renewable Energy, Elsevier, vol. 115(C), pages 113-127.
    4. Wang, Longyan & Cholette, Michael E. & Tan, Andy C.C. & Gu, Yuantong, 2017. "A computationally-efficient layout optimization method for real wind farms considering altitude variations," Energy, Elsevier, vol. 132(C), pages 147-159.
    5. Froese, Gabrielle & Ku, Shan Yu & Kheirabadi, Ali C. & Nagamune, Ryozo, 2022. "Optimal layout design of floating offshore wind farms," Renewable Energy, Elsevier, vol. 190(C), pages 94-102.
    6. Zhikun Luo & Zhifeng Sun & Fengli Ma & Yihan Qin & Shihao Ma, 2020. "Power Optimization for Wind Turbines Based on Stacking Model and Pitch Angle Adjustment," Energies, MDPI, vol. 13(16), pages 1-15, August.
    7. Smail, Houria & Alkama, Rezak & Medjdoub, Abdellah, 2018. "Optimal design of the electric connection of a wind farm," Energy, Elsevier, vol. 165(PB), pages 972-983.
    8. Kuo, Jim Y.J. & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2016. "Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming," Applied Energy, Elsevier, vol. 178(C), pages 404-414.
    9. Abdullah Al Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2020. "Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System," Energies, MDPI, vol. 13(11), pages 1-21, June.
    10. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Rasheed, Nadia, 2016. "Wind farm layout optimization using area dimensions and definite point selection techniques," Renewable Energy, Elsevier, vol. 88(C), pages 154-163.
    11. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, MengXuan & Wu, BingHeng & Chen, Kai & Zhang, Xing & Wang, Jun, 2016. "Simulating the wake flow effect of wind turbines on velocity and turbulence using particle random walk method," Energy, Elsevier, vol. 116(P1), pages 583-591.
    2. Chen, K. & Song, M.X. & Zhang, X. & Wang, S.F., 2016. "Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm," Renewable Energy, Elsevier, vol. 96(PA), pages 676-686.
    3. Gu, Huajie & Wang, Jun, 2013. "Irregular-shape wind farm micro-siting optimization," Energy, Elsevier, vol. 57(C), pages 535-544.
    4. Froese, Gabrielle & Ku, Shan Yu & Kheirabadi, Ali C. & Nagamune, Ryozo, 2022. "Optimal layout design of floating offshore wind farms," Renewable Energy, Elsevier, vol. 190(C), pages 94-102.
    5. Song, Mengxuan & Wen, Yi & Duan, Bin & Wang, Jun & Gong, Qi, 2017. "Micro-siting optimization of a wind farm built in multiple phases," Energy, Elsevier, vol. 137(C), pages 95-103.
    6. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    7. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    8. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    9. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    10. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    11. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Nonuniform wind farm layout optimization: A state-of-the-art review," Energy, Elsevier, vol. 209(C).
    12. Aguayo, Maichel M. & Fierro, Pablo E. & De la Fuente, Rodrigo A. & Sepúlveda, Ignacio A. & Figueroa, Dante M., 2021. "A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile," Applied Energy, Elsevier, vol. 294(C).
    13. Wędzik, Andrzej & Siewierski, Tomasz & Szypowski, Michał, 2016. "A new method for simultaneous optimizing of wind farm’s network layout and cable cross-sections by MILP optimization," Applied Energy, Elsevier, vol. 182(C), pages 525-538.
    14. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2014. "Optimization of wind farm micro-siting for complex terrain using greedy algorithm," Energy, Elsevier, vol. 67(C), pages 454-459.
    15. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Ederer, Nikolaus, 2014. "The right size matters: Investigating the offshore wind turbine market equilibrium," Energy, Elsevier, vol. 68(C), pages 910-921.
    17. Rodrigues, S. & Bauer, P. & Bosman, Peter A.N., 2016. "Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 587-609.
    18. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    19. Dhoot, Aditya & Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2021. "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability," Energy, Elsevier, vol. 223(C).
    20. Kuo, Jim Y.J. & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2016. "Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming," Applied Energy, Elsevier, vol. 178(C), pages 404-414.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:80:y:2015:i:c:p:567-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.