IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp782-795.html
   My bibliography  Save this article

Development of optimization algorithms for the Leaf Community microgrid

Author

Listed:
  • Provata, Elena
  • Kolokotsa, Dionysia
  • Papantoniou, Sotiris
  • Pietrini, Maila
  • Giovannelli, Antonio
  • Romiti, Gino

Abstract

The aim of this work is the development of an optimization model in order to minimize the cost of Leaf Community microgrid. This cost is a sum of energy cost and the maintenance cost of the energy storage system (ESS). The developed objective function is constrained and the problem here is solved by using the method of genetic algorithms at Matlab. The genetic algorithm decides about the transportation of the energy from or to the ESS and it calculates an optimum cost. The optimization time horizon is 24 h ahead, thus the prediction of energy production and consumption was necessary. This was achieved by using neural networks. In order to verify the performance of the developed model, some scenarios were tested. This study concludes that a management of a microgrid can achieve energy and money savings.

Suggested Citation

  • Provata, Elena & Kolokotsa, Dionysia & Papantoniou, Sotiris & Pietrini, Maila & Giovannelli, Antonio & Romiti, Gino, 2015. "Development of optimization algorithms for the Leaf Community microgrid," Renewable Energy, Elsevier, vol. 74(C), pages 782-795.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:782-795
    DOI: 10.1016/j.renene.2014.08.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114005527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.08.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kyriakarakos, George & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2012. "A fuzzy logic energy management system for polygeneration microgrids," Renewable Energy, Elsevier, vol. 41(C), pages 315-327.
    2. Llaria, Alvaro & Curea, Octavian & Jiménez, Jaime & Camblong, Haritza, 2011. "Survey on microgrids: Unplanned islanding and related inverter control techniques," Renewable Energy, Elsevier, vol. 36(8), pages 2052-2061.
    3. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
    2. Warneryd, Martin & Håkansson, Maria & Karltorp, Kersti, 2020. "Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. Wenhao Zhuo & Andrey V. Savkin, 2019. "Profit Maximizing Control of a Microgrid with Renewable Generation and BESS Based on a Battery Cycle Life Model and Energy Price Forecasting," Energies, MDPI, vol. 12(15), pages 1-17, July.
    4. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Oscar Núñez-Mata, 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures," Energies, MDPI, vol. 13(3), pages 1-32, January.
    5. Nikolaos Kampelis & Georgios I. Papayiannis & Dionysia Kolokotsa & Georgios N. Galanis & Daniela Isidori & Cristina Cristalli & Athanasios N. Yannacopoulos, 2020. "An Integrated Energy Simulation Model for Buildings," Energies, MDPI, vol. 13(5), pages 1-23, March.
    6. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    7. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    8. Kovács, András & Bátai, Roland & Csáji, Balázs Csanád & Dudás, Péter & Háy, Borbála & Pedone, Gianfranco & Révész, Tibor & Váncza, József, 2016. "Intelligent control for energy-positive street lighting," Energy, Elsevier, vol. 114(C), pages 40-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    2. Ilyas Bennia & Elhoussin Elbouchikhi & Abdelghani Harrag & Yacine Daili & Abdelhakim Saim & Allal El Moubarek Bouzid & Badreddine Kanouni, 2023. "Design, Modeling, and Validation of Grid-Forming Inverters for Frequency Synchronization and Restoration," Energies, MDPI, vol. 17(1), pages 1-25, December.
    3. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    4. Sandro Sitompul & Goro Fujita, 2021. "Impact of Advanced Load-Frequency Control on Optimal Size of Battery Energy Storage in Islanded Microgrid System," Energies, MDPI, vol. 14(8), pages 1-18, April.
    5. Xiaofeng Liu & Shijun Wang & Jiawen Sun, 2018. "Energy Management for Community Energy Network with CHP Based on Cooperative Game," Energies, MDPI, vol. 11(5), pages 1-18, April.
    6. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.
    7. Ku Ahmad, Ku Nurul Edhura & Selvaraj, Jeyraj & Rahim, Nasrudin Abd, 2013. "A review of the islanding detection methods in grid-connected PV inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 756-766.
    8. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    9. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    10. Clarke, Will Challis & Brear, Michael John & Manzie, Chris, 2020. "Control of an isolated microgrid using hierarchical economic model predictive control," Applied Energy, Elsevier, vol. 280(C).
    11. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    12. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    13. Cheng-Tao Tsai & Chih-Lung Shen & Jye-Chau Su, 2013. "A Power Supply System with ZVS and Current-Doubler Features for Hybrid Renewable Energy Conversion," Energies, MDPI, vol. 6(9), pages 1-20, September.
    14. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    15. Nithya Saiprasad & Akhtar Kalam & Aladin Zayegh, 2019. "Triple Bottom Line Analysis and Optimum Sizing of Renewable Energy Using Improved Hybrid Optimization Employing the Genetic Algorithm: A Case Study from India," Energies, MDPI, vol. 12(3), pages 1-23, January.
    16. Ngoc Bao Lai & Kyeong-Hwa Kim, 2016. "An Improved Current Control Strategy for a Grid-Connected Inverter under Distorted Grid Conditions," Energies, MDPI, vol. 9(3), pages 1-23, March.
    17. Ipsakis, Dimitris & Kraia, Tzouliana & Konsolakis, Michalis & Marnellos, George, 2018. "Remediation of Black Sea ecosystem and pure H2 generation via H2S-H2O co-electrolysis in a proton-conducting membrane cell stack reactor: A feasibility study of the integrated and autonomous approach," Renewable Energy, Elsevier, vol. 125(C), pages 806-818.
    18. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    19. Saif Mubaarak & Delong Zhang & Jinxin Liu & Yongcong Chen & Longze Wang & Sayed A. Zaki & Rongfang Yuan & Jing Wu & Yan Zhang & Meicheng Li, 2020. "Potential Techno-Economic Feasibility of Hybrid Energy Systems for Electrifying Various Consumers in Yemen," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    20. Renu Sharma & Sonali Goel, 2016. "Stand-alone hybrid energy system for sustainable development in rural India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(6), pages 1601-1614, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:782-795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.