IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3528-d522036.html
   My bibliography  Save this article

Technical Economic Analysis of Photovoltaic-Powered Electric Vehicle Charging Stations under Different Solar Irradiation Conditions in Vietnam

Author

Listed:
  • Phap Vu Minh

    (Institute of Energy Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam)

  • Sang Le Quang

    (Institute of Energy Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam)

  • Manh-Hai Pham

    (Ministry of Industry and Trade, Electric Power University, Hanoi 100000, Vietnam)

Abstract

At present, the electric vehicle (EV) market is developing strongly and widely across many countries around the world. Increasing clean energy infrastructure for EVs is a possible solution to reduce greenhouse gas emissions and help improve air quality in urban areas. Electric vehicles charged by electricity from photovoltaic (PV) systems can produce less emissions than conventional EVs charged by the utility grid. Thus, the combination of solar power and EV charging stations is one of the possible methods to achieve sustainable development in the current EV market. EVs in cities in Vietnam have developed very quickly in recent times, but the charging station infrastructure is still very limited, and most existing charging stations use electricity from the utility grid. In this paper, the optimal configuration of PV-powered EV charging stations is analyzed technically and economically under different solar irradiation conditions in Vietnam. The study results show that the optimal configuration and investment efficiency of PV-powered EV charging stations in each urban area are greatly affected by the solar irradiation value and feed-in tariff (FIT) price of rooftop solar power. In Vietnam, a region with high solar irradiation, such as Ho Chi Minh, is more likely to invest in PV-powered EV charging stations than other areas with lower solar irradiation, such as Hanoi.

Suggested Citation

  • Phap Vu Minh & Sang Le Quang & Manh-Hai Pham, 2021. "Technical Economic Analysis of Photovoltaic-Powered Electric Vehicle Charging Stations under Different Solar Irradiation Conditions in Vietnam," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3528-:d:522036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Narayan, Apurva & Ponnambalam, Kumaraswamy, 2017. "Risk-averse stochastic programming approach for microgrid planning under uncertainty," Renewable Energy, Elsevier, vol. 101(C), pages 399-408.
    2. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    3. Dominic A. Savio & Vimala A. Juliet & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Frede Blaabjerg, 2019. "Photovoltaic Integrated Hybrid Microgrid Structured Electric Vehicle Charging Station and Its Energy Management Approach," Energies, MDPI, vol. 12(1), pages 1-28, January.
    4. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    5. Ying Fan & Weixia Zhu & Zhongbing Xue & Li Zhang & Zhixiang Zou, 2015. "A Multi-Function Conversion Technique for Vehicle-to-Grid Applications," Energies, MDPI, vol. 8(8), pages 1-16, July.
    6. Ashish Kumar Karmaker & Md. Alamgir Hossain & Nallapaneni Manoj Kumar & Vishnupriyan Jagadeesan & Arunkumar Jayakumar & Biplob Ray, 2020. "Analysis of Using Biogas Resources for Electric Vehicle Charging in Bangladesh: A Techno-Economic-Environmental Perspective," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    7. Tulpule, Pinak J. & Marano, Vincenzo & Yurkovich, Stephen & Rizzoni, Giorgio, 2013. "Economic and environmental impacts of a PV powered workplace parking garage charging station," Applied Energy, Elsevier, vol. 108(C), pages 323-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando M. Camilo & Paulo Santos, 2023. "Technical-Economic Evaluation of Residential Wind and Photovoltaic Systems with Self-Consumption and Storage Systems in Portugal," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Shah, Talha Hussain & Shabbir, Altamash & Waqas, Adeel & Janjua, Abdul Kashif & Shahzad, Nadia & Pervaiz, Hina & Shakir, Sehar, 2023. "Techno-economic appraisal of electric vehicle charging stations integrated with on-grid photovoltaics on existing fuel stations: A multicity study framework," Renewable Energy, Elsevier, vol. 209(C), pages 133-144.
    3. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Zhang, Tao & Li, Shaojie & Yang, Zhi & Liu, Xiaohua & Jiang, Yi, 2023. "Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy," Applied Energy, Elsevier, vol. 341(C).
    4. Shaheer Ansari & Afida Ayob & Molla S. Hossain Lipu & Mohamad Hanif Md Saad & Aini Hussain, 2021. "A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects," Sustainability, MDPI, vol. 13(15), pages 1-34, July.
    5. Aqib Shafiq & Sheeraz Iqbal & Salman Habib & Atiq ur Rehman & Anis ur Rehman & Ali Selim & Emad M. Ahmed & Salah Kamel, 2022. "Solar PV-Based Electric Vehicle Charging Station for Security Bikes: A Techno-Economic and Environmental Analysis," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    6. Syed Taha Taqvi & Ali Almansoori & Azadeh Maroufmashat & Ali Elkamel, 2022. "Utilizing Rooftop Renewable Energy Potential for Electric Vehicle Charging Infrastructure Using Multi-Energy Hub Approach," Energies, MDPI, vol. 15(24), pages 1-21, December.
    7. Armin Razmjoo & Meysam Majidi Nezhad & Lisa Gakenia Kaigutha & Mousa Marzband & Seyedali Mirjalili & Mehdi Pazhoohesh & Saim Memon & Mehdi A. Ehyaei & Giuseppe Piras, 2021. "Investigating Smart City Development Based on Green Buildings, Electrical Vehicles and Feasible Indicators," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    8. Jamiu O. Oladigbolu & Asad Mujeeb & Amir A. Imam & Ali Muhammad Rushdi, 2022. "Design, Technical and Economic Optimization of Renewable Energy-Based Electric Vehicle Charging Stations in Africa: The Case of Nigeria," Energies, MDPI, vol. 16(1), pages 1-32, December.
    9. Tung Nguyen Thanh & Phap Vu Minh & Kien Duong Trung & Tuan Do Anh, 2021. "Study on Performance of Rooftop Solar Power Generation Combined with Battery Storage at Office Building in Northeast Region, Vietnam," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    10. Fabienne T. Schiavo & Rodrigo F. Calili & Claudio F. de Magalhães & Isabel C. G. Fróes, 2021. "The Meaning of Electric Cars in the Context of Sustainable Transition in Brazil," Sustainability, MDPI, vol. 13(19), pages 1-24, October.
    11. Zhongfu Tan & Ye Yang & Pinxi Wang & Yilun Li, 2021. "Charging Behavior Analysis of New Energy Vehicles," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    12. Raymond Kene & Thomas Olwal & Barend J. van Wyk, 2021. "Sustainable Electric Vehicle Transportation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khairy Sayed & Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2019. "Optimum Resilient Operation and Control DC Microgrid Based Electric Vehicles Charging Station Powered by Renewable Energy Sources," Energies, MDPI, vol. 12(22), pages 1-23, November.
    2. Bastida-Molina, Paula & Hurtado-Pérez, Elías & Moros Gómez, María Cristina & Vargas-Salgado, Carlos, 2021. "Multicriteria power generation planning and experimental verification of hybrid renewable energy systems for fast electric vehicle charging stations," Renewable Energy, Elsevier, vol. 179(C), pages 737-755.
    3. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    4. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    5. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    6. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    7. Sung-Guk Yoon & Seok-Gu Kang, 2017. "Economic Microgrid Planning Algorithm with Electric Vehicle Charging Demands," Energies, MDPI, vol. 10(10), pages 1-16, September.
    8. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    9. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    11. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    12. Jean-Michel Clairand & Carlos Álvarez-Bel & Javier Rodríguez-García & Guillermo Escrivá-Escrivá, 2020. "Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    13. S. Muhammad Bagher Sadati & Jamal Moshtagh & Miadreza Shafie-khah & João P. S. Catalão, 2017. "Risk-Based Bi-Level Model for Simultaneous Profit Maximization of a Smart Distribution Company and Electric Vehicle Parking Lot Owner," Energies, MDPI, vol. 10(11), pages 1-16, October.
    14. Nick Rigogiannis & Ioannis Bogatsis & Christos Pechlivanis & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Moving towards Greener Road Transportation: A Review," Clean Technol., MDPI, vol. 5(2), pages 1-25, June.
    15. Mahdi Bayati & Mehrdad Abedi & Maryam Farahmandrad & Gevork B. Gharehpetian & Kambiz Tehrani, 2021. "Important Technical Considerations in Design of Battery Chargers of Electric Vehicles," Energies, MDPI, vol. 14(18), pages 1-20, September.
    16. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    17. Simon Steinschaden & José Baptista, 2020. "Development of an Efficient Tool for Solar Charging Station Management for Electric Vehicles," Energies, MDPI, vol. 13(11), pages 1-21, June.
    18. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    19. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    20. Ushnik Mukherjee & Azadeh Maroufmashat & Apurva Narayan & Ali Elkamel & Michael Fowler, 2017. "A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways," Energies, MDPI, vol. 10(7), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3528-:d:522036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.