IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8120-d598093.html
   My bibliography  Save this article

A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects

Author

Listed:
  • Shaheer Ansari

    (Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Afida Ayob

    (Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Molla S. Hossain Lipu

    (Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
    Centre for Automotive Research (CAR), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Mohamad Hanif Md Saad

    (Department of Mechanical & Manufacturing Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
    Institute of IR 4.0, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Aini Hussain

    (Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

Abstract

Solar photovoltaic (PV) is one of the prominent sustainable energy sources which shares a greater percentage of the energy generated from renewable resources. As the need for solar energy has risen tremendously in the last few decades, monitoring technologies have received considerable attention in relation to performance enhancement. Recently, the solar PV monitoring system has been integrated with a wireless platform that comprises data acquisition from various sensors and nodes through wireless data transmission. However, several issues could affect the performance of solar PV monitoring, such as large data management, signal interference, long-range data transmission, and security. Therefore, this paper comprehensively reviews the progress of several solar PV-based monitoring technologies focusing on various data processing modules and data transmission protocols. Each module and transmission protocol-based monitoring technology is investigated with regard to type, design, implementations, specifications, and limitations. The critical discussion and analysis are carried out with respect to configurations, parameters monitored, software, platform, achievements, and suggestions. Moreover, various key issues and challenges are explored to identify the existing research gaps. Finally, this review delivers selective proposals for future research works. All the highlighted insights of this review will hopefully lead to increased efforts toward the enhancement of the monitoring technologies in future sustainable solar PV applications.

Suggested Citation

  • Shaheer Ansari & Afida Ayob & Molla S. Hossain Lipu & Mohamad Hanif Md Saad & Aini Hussain, 2021. "A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects," Sustainability, MDPI, vol. 13(15), pages 1-34, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8120-:d:598093
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    2. Phap Vu Minh & Sang Le Quang & Manh-Hai Pham, 2021. "Technical Economic Analysis of Photovoltaic-Powered Electric Vehicle Charging Stations under Different Solar Irradiation Conditions in Vietnam," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    3. Batista, N.C. & Melício, R. & Matias, J.C.O. & Catalão, J.P.S., 2013. "Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid," Energy, Elsevier, vol. 49(C), pages 306-315.
    4. Rahman, M.Mahbubur & Selvaraj, J. & Rahim, N.A. & Hasanuzzaman, M., 2018. "Global modern monitoring systems for PV based power generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4142-4158.
    5. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    6. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    7. Zurita, Adriana & Castillejo-Cuberos, Armando & García, Maurianny & Mata-Torres, Carlos & Simsek, Yeliz & García, Redlich & Antonanzas-Torres, Fernando & Escobar, Rodrigo A., 2018. "State of the art and future prospects for solar PV development in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 701-727.
    8. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. José Miguel Paredes-Parra & Antonio Mateo-Aroca & Guillermo Silvente-Niñirola & María C. Bueso & Ángel Molina-García, 2018. "PV Module Monitoring System Based on Low-Cost Solutions: Wireless Raspberry Application and Assessment," Energies, MDPI, vol. 11(11), pages 1-20, November.
    10. Triki-Lahiani, Asma & Bennani-Ben Abdelghani, Afef & Slama-Belkhodja, Ilhem, 2018. "Fault detection and monitoring systems for photovoltaic installations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2680-2692.
    11. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    12. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    13. José Miguel Paredes-Parra & Antonio Javier García-Sánchez & Antonio Mateo-Aroca & Ángel Molina-García, 2019. "An Alternative Internet-of-Things Solution Based on LoRa for PV Power Plants: Data Monitoring and Management," Energies, MDPI, vol. 12(5), pages 1-20, March.
    14. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    15. Padmanathan K. & Uma Govindarajan & Vigna K. Ramachandaramurthy & Sudar Oli Selvi T., 2017. "Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Wang & Dong Yu & Jinyu Zhou & Chaowu Jin, 2023. "Data Storage Optimization Model Based on Improved Simulated Annealing Algorithm," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    2. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    3. Masoud Emamian & Aref Eskandari & Mohammadreza Aghaei & Amir Nedaei & Amirmohammad Moradi Sizkouhi & Jafar Milimonfared, 2022. "Cloud Computing and IoT Based Intelligent Monitoring System for Photovoltaic Plants Using Machine Learning Techniques," Energies, MDPI, vol. 15(9), pages 1-25, April.
    4. Mariusz Węglarski & Piotr Jankowski-Mihułowicz & Kazimierz Kamuda & Patryk Pyt & Grzegorz Pitera & Wojciech Lichoń & Mateusz Chamera & Cezary Ciejka, 2022. "RFID Sensors for Monitoring Glazing Units Integrating Photovoltaic Modules," Energies, MDPI, vol. 15(4), pages 1-22, February.
    5. Ceylin Şirin & Azim Doğuş Tuncer & Ataollah Khanlari, 2023. "Improving the Performance of Unglazed Solar Air Heating Walls Using Mesh Packing and Nano-Enhanced Absorber Coating: An Energy–Exergy and Enviro-Economic Assessment," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    6. Astitva Kumar & Mohammad Rizwan & Uma Nangia & Muhannad Alaraj, 2021. "Grey Wolf Optimizer-Based Array Reconfiguration to Enhance Power Production from Solar Photovoltaic Plants under Different Scenarios," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    7. Jacek Kusznier, 2023. "Influence of Environmental Factors on the Intelligent Management of Photovoltaic and Wind Sections in a Hybrid Power Plant," Energies, MDPI, vol. 16(4), pages 1-15, February.
    8. Tomasz Popławski & Sebastian Dudzik & Piotr Szeląg & Janusz Baran, 2021. "A Case Study of a Virtual Power Plant (VPP) as a Data Acquisition Tool for PV Energy Forecasting," Energies, MDPI, vol. 14(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Francisco José Gimeno-Sales & Salvador Orts-Grau & Alejandro Escribá-Aparisi & Pablo González-Altozano & Ibán Balbastre-Peralta & Camilo Itzame Martínez-Márquez & María Gasque & Salvador Seguí-Chilet, 2020. "PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    3. Carlos Toledo & Lucía Serrano-Lujan & Jose Abad & Antonio Lampitelli & Antonio Urbina, 2019. "Measurement of Thermal and Electrical Parameters in Photovoltaic Systems for Predictive and Cross-Correlated Monitorization," Energies, MDPI, vol. 12(4), pages 1-20, February.
    4. José Miguel Paredes-Parra & Antonio Javier García-Sánchez & Antonio Mateo-Aroca & Ángel Molina-García, 2019. "An Alternative Internet-of-Things Solution Based on LoRa for PV Power Plants: Data Monitoring and Management," Energies, MDPI, vol. 12(5), pages 1-20, March.
    5. Enaganti, Prasanth K. & Bhattacharjee, Ankur & Ghosh, Aritra & Chanchangi, Yusuf N. & Chakraborty, Chanchal & Mallick, Tapas K. & Goel, Sanket, 2022. "Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems," Energy, Elsevier, vol. 239(PC).
    6. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    9. Ali M. Eltamaly & Mohamed A. Ahmed & Majed A. Alotaibi & Abdulrahman I. Alolah & Young-Chon Kim, 2020. "Performance of Communication Network for Monitoring Utility Scale Photovoltaic Power Plants," Energies, MDPI, vol. 13(21), pages 1-17, October.
    10. José Miguel Paredes-Parra & Antonio Mateo-Aroca & Guillermo Silvente-Niñirola & María C. Bueso & Ángel Molina-García, 2018. "PV Module Monitoring System Based on Low-Cost Solutions: Wireless Raspberry Application and Assessment," Energies, MDPI, vol. 11(11), pages 1-20, November.
    11. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    12. Václav Beránek & Tomáš Olšan & Martin Libra & Vladislav Poulek & Jan Sedláček & Minh-Quan Dang & Igor I. Tyukhov, 2018. "New Monitoring System for Photovoltaic Power Plants’ Management," Energies, MDPI, vol. 11(10), pages 1-13, September.
    13. Md Saif Hassan Onim & Zubayar Mahatab Md Sakif & Adil Ahnaf & Ahsan Kabir & Abul Kalam Azad & Amanullah Maung Than Oo & Rafina Afreen & Sumaita Tanjim Hridy & Mahtab Hossain & Taskeed Jabid & Md Sawka, 2022. "SolNet: A Convolutional Neural Network for Detecting Dust on Solar Panels," Energies, MDPI, vol. 16(1), pages 1-19, December.
    14. Saif Jamal & Jagadeesh Pasupuleti & Nur Azzammudin Rahmat & Nadia M. L. Tan, 2022. "Energy Management System for Grid-Connected Nanogrid during COVID-19," Energies, MDPI, vol. 15(20), pages 1-20, October.
    15. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    16. Maharjan, Pukar & Salauddin, Md & Cho, Hyunok & Park, Jae Yeong, 2018. "An indoor power line based magnetic field energy harvester for self-powered wireless sensors in smart home applications," Applied Energy, Elsevier, vol. 232(C), pages 398-408.
    17. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    18. Qingshan Gong & Yurong Xiong & Zhigang Jiang & Xugang Zhang & Mingmao Hu & Zhanlong Cao, 2022. "Economic, Environmental and Social Benefits Analysis of Remanufacturing Strategies for Used Products," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    19. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2018. "Solar energy dust and soiling R&D progress: Literature review update for 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2504-2536.
    20. Mariusz Niekurzak & Wojciech Lewicki & Wojciech Drożdż & Paweł Miązek, 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household," Energies, MDPI, vol. 15(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8120-:d:598093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.