IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5878-d637319.html
   My bibliography  Save this article

Important Technical Considerations in Design of Battery Chargers of Electric Vehicles

Author

Listed:
  • Mahdi Bayati

    (Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran)

  • Mehrdad Abedi

    (Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran)

  • Maryam Farahmandrad

    (Bu-Ali Sina University, Shahid Mostafa Ahmadi Roshan Street, Hamedan 6516738695, Iran)

  • Gevork B. Gharehpetian

    (Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran)

  • Kambiz Tehrani

    (ESIGELEC-IRSEEM, Normandy University, 1002476801 Rouen, France)

Abstract

There are many important trade-offs and constraints on cost, volume, weight, conduction losses, switching losses, microcontrollers, isolation, voltage and current levels, voltage and current ripples, battery specifications, charging–discharging algorithms, control system, switch gate drivers, and efficiency of battery chargers in electric vehicles. In this paper, a well-known power electronic topology commonly used in recent relevant studies is considered, and some important technical considerations with regard to the mentioned trade-offs and constraints are discussed in detail for the first time. The discussion concerns the practical and theoretical experiences in implementation of battery chargers and charging stations of electric vehicles exclusively, and it can be extended to various other power electronic topologies.

Suggested Citation

  • Mahdi Bayati & Mehrdad Abedi & Maryam Farahmandrad & Gevork B. Gharehpetian & Kambiz Tehrani, 2021. "Important Technical Considerations in Design of Battery Chargers of Electric Vehicles," Energies, MDPI, vol. 14(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5878-:d:637319
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng-Tao Tsai & Ying-Che Kuo & Ying-Piao Kuo & Chin-Tsung Hsieh, 2015. "A Reflex Charger with ZVS and Non-Dissipative Cells for Photovoltaic Energy Conversion," Energies, MDPI, vol. 8(2), pages 1-17, February.
    2. Khalid Mehmood & Yaser Iftikhar & Shouming Chen & Shaheera Amin & Alia Manzoor & Jinlong Pan, 2020. "Analysis of Inter-Temporal Change in the Energy and CO 2 Emissions Efficiency of Economies: A Two Divisional Network DEA Approach," Energies, MDPI, vol. 13(13), pages 1-17, June.
    3. Pablo Korth Pereira Ferraz & Julia Kowal, 2019. "A Comparative Study on the Influence of DC/DC-Converter Induced High Frequency Current Ripple on Lithium-Ion Batteries," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    4. Dominic A. Savio & Vimala A. Juliet & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Frede Blaabjerg, 2019. "Photovoltaic Integrated Hybrid Microgrid Structured Electric Vehicle Charging Station and Its Energy Management Approach," Energies, MDPI, vol. 12(1), pages 1-28, January.
    5. Abdel-Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Van den Bossche, Peter & Van Mierlo, Joeri, 2017. "Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries," Energy, Elsevier, vol. 120(C), pages 179-191.
    6. Li, Maobing & Xu, Hui & Li, Weimin & Liu, Yin & Li, Fade & Hu, Yue & Liu, Li, 2016. "The structure and control method of hybrid power source for electric vehicle," Energy, Elsevier, vol. 112(C), pages 1273-1285.
    7. Jerzy Ryszard Szymanski & Marta Zurek-Mortka & Daniel Wojciechowski & Nikolai Poliakov, 2020. "Unidirectional DC/DC Converter with Voltage Inverter for Fast Charging of Electric Vehicle Batteries," Energies, MDPI, vol. 13(18), pages 1-17, September.
    8. Gaizka Saldaña & José Ignacio San Martín & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Analysis of the Current Electric Battery Models for Electric Vehicle Simulation," Energies, MDPI, vol. 12(14), pages 1-27, July.
    9. J. M. Amanor-Boadu & A. Guiseppi-Elie & E. Sánchez-Sinencio, 2018. "The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries," Energies, MDPI, vol. 11(8), pages 1-15, August.
    10. Meng Di Yin & Jeonghun Cho & Daejin Park, 2016. "Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve," Energies, MDPI, vol. 9(3), pages 1-20, March.
    11. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    12. Abdel Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Mantels, Bart & Mulder, Grietus & Van den Bossche, Peter & Van Mierlo, Joeri, 2015. "Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process," Applied Energy, Elsevier, vol. 152(C), pages 143-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halid Kaplan & Kambiz Tehrani & Mo Jamshidi, 2021. "A Fault Diagnosis Design Based on Deep Learning Approach for Electric Vehicle Applications," Energies, MDPI, vol. 14(20), pages 1-14, October.
    2. Peter Makeen & Hani A. Ghali & Saim Memon, 2022. "Theoretical and Experimental Analysis of a New Intelligent Charging Controller for Off-Board Electric Vehicles Using PV Standalone System Represented by a Small-Scale Lithium-Ion Battery," Sustainability, MDPI, vol. 14(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinrong Huang & Yuanyuan Li & Anirudh Budnar Acharya & Xin Sui & Jinhao Meng & Remus Teodorescu & Daniel-Ioan Stroe, 2020. "A Review of Pulsed Current Technique for Lithium-ion Batteries," Energies, MDPI, vol. 13(10), pages 1-18, May.
    2. Ghassemi, Alireza & Chakraborty Banerjee, Parama & Hollenkamp, Anthony F. & Zhang, Zhe & Bahrani, Behrooz, 2021. "Effects of alternating current on Li-ion battery performance: Monitoring degradative processes with in-situ characterization techniques," Applied Energy, Elsevier, vol. 284(C).
    3. Neha Bhushan & Saad Mekhilef & Kok Soon Tey & Mohamed Shaaban & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "Overview of Model- and Non-Model-Based Online Battery Management Systems for Electric Vehicle Applications: A Comprehensive Review of Experimental and Simulation Studies," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    4. Zhenhai Gao & Xiaoting Zhang & Yang Xiao & Hao Gao & Huiyuan Wang & Changhao Piao, 2019. "Influence of Low-Temperature Charge on the Mechanical Integrity Behavior of 18650 Lithium-Ion Battery Cells Subject to Lateral Compression," Energies, MDPI, vol. 12(5), pages 1-17, February.
    5. Guangwei Chen & Zhitao Liu & Hongye Su, 2020. "An Optimal Fast-Charging Strategy for Lithium-Ion Batteries via an Electrochemical–Thermal Model with Intercalation-Induced Stresses and Film Growth," Energies, MDPI, vol. 13(9), pages 1-16, May.
    6. Phap Vu Minh & Sang Le Quang & Manh-Hai Pham, 2021. "Technical Economic Analysis of Photovoltaic-Powered Electric Vehicle Charging Stations under Different Solar Irradiation Conditions in Vietnam," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    7. Mathieu, Romain & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2021. "Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures," Applied Energy, Elsevier, vol. 283(C).
    8. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    9. María Garcés Quílez & Mohamed Abdel-Monem & Mohamed El Baghdadi & Yang Yang & Joeri Van Mierlo & Omar Hegazy, 2018. "Modelling, Analysis and Performance Evaluation of Power Conversion Unit in G2V/V2G Application—A Review," Energies, MDPI, vol. 11(5), pages 1-24, April.
    10. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    11. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    12. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2019. "Comparative assessment of new liquid-to-vapor type battery cooling systems," Energy, Elsevier, vol. 188(C).
    13. Liu, Hu-Chen & You, Xiao-Yue & Xue, Yi-Xi & Luan, Xue, 2017. "Exploring critical factors influencing the diffusion of electric vehicles in China: A multi-stakeholder perspective," Research in Transportation Economics, Elsevier, vol. 66(C), pages 46-58.
    14. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    15. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    16. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    18. Georgios Salagiannis & Emmanuel Tatakis, 2023. "Review on Non-Isolated Multiport Converters for Residential DC Microgrids," Energies, MDPI, vol. 17(1), pages 1-19, December.
    19. Cassetta, Ernesto & Marra, Alessandro & Pozzi, Cesare & Antonelli, Paola, 2017. "Emerging technological trajectories and new mobility solutions. A large-scale investigation on transport-related innovative start-ups and implications for policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 1-11.
    20. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5878-:d:637319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.