IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3445-d1691610.html
   My bibliography  Save this article

A Systematic Mapping Study on Automatic Control Systems of Multi-Port dc/dc Power Converters

Author

Listed:
  • Diego Vargas

    (Departamento de Automatización y Control Industrial, Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador
    These authors contributed equally to this work.)

  • Leonardo Ortega

    (Departamento de Automatización y Control Industrial, Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador
    These authors contributed equally to this work.)

  • Julio C. Caiza

    (Departamento de Electrónica, Telecomunicaciones y Redes de Información, Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador
    These authors contributed equally to this work.)

  • Danny S. Guamán

    (Departamento de Electrónica, Telecomunicaciones y Redes de Información, Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador
    These authors contributed equally to this work.)

Abstract

In the ongoing transition to renewable energy sources, power converters have become indispensable. Their prevalence is increasing, enabling efficient energy conversion, enhancing reliability and stability, and optimizing power extraction from renewable sources. Multi-port dc/dc power converters are widely used because they offer advantages in managing multiple sources and loads. However, designing an automatic control system for these converters presents a challenge due to their complexity. Many configurations for multi-port dc/dc power converters have been proposed, featuring diverse combinations of controllers, modulation techniques, and topologies tailored to specific applications. The body of knowledge on these configurations has grown. Yet, papers have been published according to the authors’ areas of specialization, thus generating a scattered and unorganized body of knowledge and making it difficult to discern research trends and open challenges. Previous studies have attempted to organize knowledge about these configurations, but they have not established a systematic mapping process that follows a rigorous and objective methodology. This paper conducts a systematic mapping study on Automatic Control Systems of multi-port dc/dc power converters. Our study analyzed 122 papers from the 777 papers found around the topic to find and organize the body of knowledge on topology, controller, efficiency, number of elements, modulation technique, and practical applications. This systematic mapping provides a foundational framework for researchers, aiming to inspire further exploration and the development of innovative controller systems in multi-port dc/dc power converters. We found the application of machine learning techniques in dc/dc power converters constitutes an open challenge in these devices.

Suggested Citation

  • Diego Vargas & Leonardo Ortega & Julio C. Caiza & Danny S. Guamán, 2025. "A Systematic Mapping Study on Automatic Control Systems of Multi-Port dc/dc Power Converters," Energies, MDPI, vol. 18(13), pages 1-48, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3445-:d:1691610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominic A. Savio & Vimala A. Juliet & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Frede Blaabjerg, 2019. "Photovoltaic Integrated Hybrid Microgrid Structured Electric Vehicle Charging Station and Its Energy Management Approach," Energies, MDPI, vol. 12(1), pages 1-28, January.
    2. Aghahosseini, Arman & Bogdanov, Dmitrii & Barbosa, Larissa S.N.S. & Breyer, Christian, 2019. "Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 187-205.
    3. Ali Jawad Alrubaie & Mahmood Swadi & Mohamed Salem & Anna Richelli & Ali Bughneda & Mohamad Kamarol, 2024. "Systematic Review of Bidirectional, Multiport Converter Structures and Their Derivatives: A Case Study of Bidirectional Dual Input Dual Output Converters," Energies, MDPI, vol. 17(7), pages 1-37, March.
    4. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    5. Buticchi, Giampaolo & Costa, Levy Ferreira & Liserre, Marco, 2019. "Multi-port DC/DC converter for the electrical power distribution system of the more electric aircraft," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 387-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zabaloy, Maria Florencia & Viego, Valentina, 2022. "Household electricity demand in Latin America and the Caribbean: A meta-analysis of price elasticity," Utilities Policy, Elsevier, vol. 75(C).
    2. Chian-Song Chiu & Yu-Ting Chen, 2025. "MPPT-Based Chaotic ABC Algorithm for a Photovoltaic Power System Under Partial Shading Conditions," Energies, MDPI, vol. 18(7), pages 1-17, March.
    3. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    4. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    5. Sgouridis, Sgouris & Ali, Mohamed & Sleptchenko, Andrei & Bouabid, Ali & Ospina, Gustavo, 2021. "Aluminum smelters in the energy transition: Optimal configuration and operation for renewable energy integration in high insolation regions," Renewable Energy, Elsevier, vol. 180(C), pages 937-953.
    6. Reguieg, Zakaria & Bouyakoub, Ismail & Mehedi, Fayçal, 2025. "Harmonic mitigation in grid-integrated renewable energy systems with nonlinear loads," Energy, Elsevier, vol. 324(C).
    7. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    8. Pingye Wan & Miao Huang & Jinshan Mou & Lili Tao & Shuping Zhang & Zhihua Hu, 2025. "Voltage Unbalance Control Strategy for Local Shading Photovoltaic Grid-Connected System," Energies, MDPI, vol. 18(3), pages 1-24, January.
    9. Dominic Savio Abraham & Balaji Chandrasekar & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Venkatesan Ramakrishnan & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Fuzzy-Based Efficient Control of DC Microgrid Configuration for PV-Energized EV Charging Station," Energies, MDPI, vol. 16(6), pages 1-17, March.
    10. Boyan Huang & Kai Song & Shulin Jiang & Zhenqing Zhao & Zhiqiang Zhang & Cong Li & Jiawen Sun, 2024. "A Robust Salp Swarm Algorithm for Photovoltaic Maximum Power Point Tracking Under Partial Shading Conditions," Mathematics, MDPI, vol. 12(24), pages 1-17, December.
    11. Lei, Hongxuan & Liu, Pan & Cheng, Qian & Xu, Huan & Liu, Weibo & Zheng, Yalian & Chen, Xiangding & Zhou, Yong, 2024. "Frequency, duration, severity of energy drought and its propagation in hydro-wind-photovoltaic complementary systems," Renewable Energy, Elsevier, vol. 230(C).
    12. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    13. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    14. Fan, Jing-Li & Huang, Xi & Shi, Jie & Li, Kai & Cai, Jingwen & Zhang, Xian, 2023. "Complementary potential of wind-solar-hydro power in Chinese provinces: Based on a high temporal resolution multi-objective optimization model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Khalili, Siavash & Lopez, Gabriel & Breyer, Christian, 2025. "Role and trends of flexibility options in 100% renewable energy system analyses towards the Power-to-X Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    16. Aşkın, Asmin & Kılkış, Şiir & Akınoğlu, Bülent Gültekin, 2023. "Recycling photovoltaic modules within a circular economy approach and a snapshot for Türkiye," Renewable Energy, Elsevier, vol. 208(C), pages 583-596.
    17. Zulfiqar Ali & Syed Zagam Abbas & Anzar Mahmood & Syed Wajahat Ali & Syed Bilal Javed & Chun-Lien Su, 2023. "A Study of a Generalized Photovoltaic System with MPPT Using Perturb and Observer Algorithms under Varying Conditions," Energies, MDPI, vol. 16(9), pages 1-21, April.
    18. Rizki, H. & Boufounas, E.-M. & El Amrani, A. & El Amraoui, M. & Bejjit, L., 2025. "Differential Evolution algorithm based Double Integral Sliding Mode Control for Maximum Power Point Tracking of a standalone photovoltaic system," Renewable Energy, Elsevier, vol. 244(C).
    19. Xia, Tian & Li, Yaowang & Zhang, Ning & Kang, Chongqing, 2022. "Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Majidi, Hassan & Hayati, Mohammad Mohsen & Breyer, Christian & Mohammadi-ivatloo, Behnam & Honkapuro, Samuli & Karjunen, Hannu & Laaksonen, Petteri & Sihvonen, Ville, 2025. "Overview of energy modeling requirements and tools for future smart energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3445-:d:1691610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.