Author
Listed:
- Diego Vargas
(Departamento de Automatización y Control Industrial, Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador
These authors contributed equally to this work.)
- Leonardo Ortega
(Departamento de Automatización y Control Industrial, Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador
These authors contributed equally to this work.)
- Julio C. Caiza
(Departamento de Electrónica, Telecomunicaciones y Redes de Información, Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador
These authors contributed equally to this work.)
- Danny S. Guamán
(Departamento de Electrónica, Telecomunicaciones y Redes de Información, Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador
These authors contributed equally to this work.)
Abstract
In the ongoing transition to renewable energy sources, power converters have become indispensable. Their prevalence is increasing, enabling efficient energy conversion, enhancing reliability and stability, and optimizing power extraction from renewable sources. Multi-port dc/dc power converters are widely used because they offer advantages in managing multiple sources and loads. However, designing an automatic control system for these converters presents a challenge due to their complexity. Many configurations for multi-port dc/dc power converters have been proposed, featuring diverse combinations of controllers, modulation techniques, and topologies tailored to specific applications. The body of knowledge on these configurations has grown. Yet, papers have been published according to the authors’ areas of specialization, thus generating a scattered and unorganized body of knowledge and making it difficult to discern research trends and open challenges. Previous studies have attempted to organize knowledge about these configurations, but they have not established a systematic mapping process that follows a rigorous and objective methodology. This paper conducts a systematic mapping study on Automatic Control Systems of multi-port dc/dc power converters. Our study analyzed 122 papers from the 777 papers found around the topic to find and organize the body of knowledge on topology, controller, efficiency, number of elements, modulation technique, and practical applications. This systematic mapping provides a foundational framework for researchers, aiming to inspire further exploration and the development of innovative controller systems in multi-port dc/dc power converters. We found the application of machine learning techniques in dc/dc power converters constitutes an open challenge in these devices.
Suggested Citation
Diego Vargas & Leonardo Ortega & Julio C. Caiza & Danny S. Guamán, 2025.
"A Systematic Mapping Study on Automatic Control Systems of Multi-Port dc/dc Power Converters,"
Energies, MDPI, vol. 18(13), pages 1-48, June.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:13:p:3445-:d:1691610
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3445-:d:1691610. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.