IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125001922.html
   My bibliography  Save this article

Differential Evolution algorithm based Double Integral Sliding Mode Control for Maximum Power Point Tracking of a standalone photovoltaic system

Author

Listed:
  • Rizki, H.
  • Boufounas, E.-M.
  • El Amrani, A.
  • El Amraoui, M.
  • Bejjit, L.

Abstract

The purpose of this study is to develop a robust control strategy based on the Sliding Mode Control (SMC) method and its advanced form of Double Integral Sliding Mode Control (DISMC) enhanced by a Differential Evolution (DE) algorithm. This approach focuses on offering a strong and effective method to adjust the controller parameters to minimize the tracking error between the PV output voltage and the reference. The DE algorithm uses initialization, mutation, crossover, and selection phases to accurately find the optimal controller coefficients for effectively implementing the control strategy of DISMC. The present paper highlights the superior performance of DE-DISMC compared to other controllers optimized with conventional methods, demonstrating its ability to provide the highest stability, accuracy, and efficiency to optimize the Maximum Power Point Tracking (MPPT) process. Using real climatic data from Errachidia city which is located in the south-east of Morocco, this work illustrates DE-DISMC’s ability to maintain the PV system’s peak performance in the face of varying environmental conditions, and the Lyapunov analysis confirms the system’s stability. The results of this study are evaluated using various statistical and analytical metrics, including response time, magnitude of chattering, steady-state error, and efficiency. The findings highlight the high performance of the proposed DE-DISMC controller, especially under real climatic test conditions, achieving a response time of 1.1 ms, which is 58% faster than DE-ISMC and 89% than DE-CSMC, along with a negligible chattering magnitude of 2.8×10−6V. It also demonstrates strong resilience and effectiveness, reaching a minimal steady-state error of 0.00014 V and a high efficiency of 99.99%. This balance makes DE-DISMC a reliable control solution, especially in changing environmental conditions.

Suggested Citation

  • Rizki, H. & Boufounas, E.-M. & El Amrani, A. & El Amraoui, M. & Bejjit, L., 2025. "Differential Evolution algorithm based Double Integral Sliding Mode Control for Maximum Power Point Tracking of a standalone photovoltaic system," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125001922
    DOI: 10.1016/j.renene.2025.122530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125001922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Shiyong & Shahzad, Muhammad & Asif, Hafiz Muhammad & Gao, Jing & Muqeet, Hafiz Abdul, 2023. "Advanced optimizer for maximum power point tracking of photovoltaic systems in smart grid: A roadmap towards clean energy technologies," Renewable Energy, Elsevier, vol. 206(C), pages 1326-1335.
    2. Jately, Vibhu & Azzopardi, Brian & Joshi, Jyoti & Venkateswaran V, Balaji & Sharma, Abhinav & Arora, Sudha, 2021. "Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Águila-León, Jesús & Vargas-Salgado, Carlos & Díaz-Bello, Dácil & Montagud-Montalvá, Carla, 2024. "Optimizing photovoltaic systems: A meta-optimization approach with GWO-Enhanced PSO algorithm for improving MPPT controllers," Renewable Energy, Elsevier, vol. 230(C).
    4. Shufu Yuan & Yuzhang Ji & Yongxu Chen & Xin Liu & Weijun Zhang, 2023. "An Improved Differential Evolution for Parameter Identification of Photovoltaic Models," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    5. Li, Guorong & Zhang, Yunpeng & Zhou, Hai & Wu, Ji & Sun, Shumin & You, Daning & Zhang, Yuanpeng, 2024. "Novel reference condition independent method for estimating performance for PV modules based on double-diode model," Renewable Energy, Elsevier, vol. 226(C).
    6. Yılmaz, Mehmet & Kaleli, Alirıza & Çorapsız, Muhammed Fatih, 2023. "Machine learning based dynamic super twisting sliding mode controller for increase speed and accuracy of MPPT using real-time data under PSCs," Renewable Energy, Elsevier, vol. 219(P1).
    7. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    8. Refaat, Ahmed & Ali, Qays Adnan & Elsakka, Mohamed Mohamed & Elhenawy, Yasser & Majozi, Thokozani & Korovkin, Nikolay V. & Elfar, Medhat Hegazy, 2024. "Extraction of maximum power from PV system based on horse herd optimization MPPT technique under various weather conditions," Renewable Energy, Elsevier, vol. 220(C).
    9. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    10. Gómez, Javier & Chicaiza, William D. & Escaño, Juan M. & Bordons, Carlos, 2023. "A renewable energy optimisation approach with production planning for a real industrial process: An application of genetic algorithms," Renewable Energy, Elsevier, vol. 215(C).
    11. Ashwin Kumar Devarakonda & Natarajan Karuppiah & Tamilselvi Selvaraj & Praveen Kumar Balachandran & Ravivarman Shanmugasundaram & Tomonobu Senjyu, 2022. "A Comparative Analysis of Maximum Power Point Techniques for Solar Photovoltaic Systems," Energies, MDPI, vol. 15(22), pages 1-30, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chian-Song Chiu & Yu-Ting Chen, 2025. "MPPT-Based Chaotic ABC Algorithm for a Photovoltaic Power System Under Partial Shading Conditions," Energies, MDPI, vol. 18(7), pages 1-17, March.
    2. Wang, Zhenlong & Wang, Yifan & Zhang, Xinrui & Yang, Dong & Ma, Duanyu & Ramakrishna, Seeram & Yuan, Weizheng & Ye, Tao, 2024. "Flexible photovoltaic micro-power system enabled with a customized MPPT," Applied Energy, Elsevier, vol. 367(C).
    3. Debabrata Barik & Arun M. & Muhammad Ahsan Saeed & Tholkappiyan Ramachandran, 2022. "Experimental and Computational Analysis of Aluminum-Coated Dimple and Plain Tubes in Solar Water Heater System," Energies, MDPI, vol. 16(1), pages 1-18, December.
    4. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    5. Hanifi, Hamed & Pander, Matthias & Zeller, Ulli & Ilse, Klemens & Dassler, David & Mirza, Mark & Bahattab, Mohammed A. & Jaeckel, Bengt & Hagendorf, Christian & Ebert, Matthias & Gottschalg, Ralph & S, 2020. "Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions," Applied Energy, Elsevier, vol. 280(C).
    6. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
    7. Sameer Al-Dahidi & Piero Baraldi & Miriam Fresc & Enrico Zio & Lorenzo Montelatici, 2024. "Feature Selection by Binary Differential Evolution for Predicting the Energy Production of a Wind Plant," Energies, MDPI, vol. 17(10), pages 1-19, May.
    8. Salah Mahdi Thajeel & Doğu Çağdaş Atilla, 2025. "Reinforcement Neural Network-Based Grid-Integrated PV Control and Battery Management System," Energies, MDPI, vol. 18(3), pages 1-20, January.
    9. Sarkar, Vaskar & Kolakaluri, Vinay Kumar, 2025. "Two-part power referencing for an efficient serially coordinated distributed flexible power point tracking of photovoltaic plants," Renewable Energy, Elsevier, vol. 238(C).
    10. Pingye Wan & Miao Huang & Jinshan Mou & Lili Tao & Shuping Zhang & Zhihua Hu, 2025. "Voltage Unbalance Control Strategy for Local Shading Photovoltaic Grid-Connected System," Energies, MDPI, vol. 18(3), pages 1-24, January.
    11. Boyan Huang & Kai Song & Shulin Jiang & Zhenqing Zhao & Zhiqiang Zhang & Cong Li & Jiawen Sun, 2024. "A Robust Salp Swarm Algorithm for Photovoltaic Maximum Power Point Tracking Under Partial Shading Conditions," Mathematics, MDPI, vol. 12(24), pages 1-17, December.
    12. Salah Abbas Taha & Zuhair S. Al-Sagar & Mohammed Abdulla Abdulsada & Mohammed Alruwaili & Moustafa Ahmed Ibrahim, 2025. "Design of an Efficient MPPT Topology Based on a Grey Wolf Optimizer-Particle Swarm Optimization (GWO-PSO) Algorithm for a Grid-Tied Solar Inverter Under Variable Rapid-Change Irradiance," Energies, MDPI, vol. 18(8), pages 1-21, April.
    13. Arsad, A.Z. & Zuhdi, A.W. Mahmood & Azhar, A.D. & Chau, C.F. & Ghazali, A., 2025. "Advancements in maximum power point tracking for solar charge controllers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    14. Víctor Ferreira Gruner & Jefferson William Zanotti & Walbermark Marques Santos & Thiago Antonio Pereira & Lenon Schmitz & Denizar Cruz Martins & Roberto Francisco Coelho, 2023. "Modified Current Sensorless Incremental Conductance Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 16(2), pages 1-16, January.
    15. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    16. Agata Mielcarek & Bartosz Ceran & Jakub Jurasz, 2023. "The Impact of Degradation of PV/Battery-Independent System Components on Technical and Economic Indicators and Sizing Process," Energies, MDPI, vol. 16(18), pages 1-32, September.
    17. Huang, Xin & Wang, He & Jiang, Xuefang & Yang, Hong, 2023. "Performance degradation and reliability evaluation of crystalline silicon photovoltaic modules without and with considering measurement reproducibility: A case study in desert area," Renewable Energy, Elsevier, vol. 219(P1).
    18. Ángel Adrián Orta-Quintana & Rogelio Ernesto García-Chávez & Ramón Silva-Ortigoza & Magdalena Marciano-Melchor & Miguel Gabriel Villarreal-Cervantes & José Rafael García-Sánchez & Rocío García-Cortés , 2023. "Sensorless Tracking Control Based on Sliding Mode for the “Full-Bridge Buck Inverter–DC Motor” System Fed by PV Panel," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    19. Pramod Rajput & Maria Malvoni & Nallapaneni Manoj Kumar & O. S. Sastry & Arunkumar Jayakumar, 2020. "Operational Performance and Degradation Influenced Life Cycle Environmental–Economic Metrics of mc-Si, a-Si and HIT Photovoltaic Arrays in Hot Semi-arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    20. Wang, Zaixing & Lin, Yi & Guo, Yu & Liang, Fengli & He, Zhenzong & Kang, Le & Hu, Jiajun & Mao, Junkui & Li, Molly Meng-Jung, 2025. "Feasibility, environmental, and economic analysis of alternative fuel distributed power systems for reliable off-grid energy supply," Applied Energy, Elsevier, vol. 384(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125001922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.