IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v308y2022ics0306261921014999.html
   My bibliography  Save this article

Developing an integrated social, economic, environmental, and technical analysis model for sustainable development using hybrid multi-criteria decision making methods

Author

Listed:
  • Singh, Shweta
  • Upadhyay, Surya Prakash
  • Powar, Satvasheel

Abstract

Selecting an appropriate location for a large infrastructure project poses difficult situations. It shall satisfy sustainability indicators and establish harmony among multiple goals of multiple stakeholders. In such a situation, Multi-Criteria Decision Making techniques allow assessing qualitative and quantitative attributes, analysing and removing subjective biases and help in arriving at objective decisions. However, a single Multi-Criteria Decision Making technique may not be an effective tool to generate concrete results as there is no validation of the results. By utilising hybrid Multi-Criteria Decision Making methods, one can incorporate, gauge, and assess the range of social, economic, and environmental impacts precisely and achieve an accurate result by validating results by other methods. Therefore, this paper develops a model called as Social, Economic, Environmental and Technical Assessment model. It combines four fuzzy Multi-Criteria Decision Making techniques viz. Fuzzy Stepwise Weighted Assessment Ratio Analysis, Fuzzy Multi-Objective Optimization by Ratio Analysis, Fuzzy Weighted Aggregated Sum Product Assessment and Fuzzy Technique for Order of Preference by Similarity to Ideal Solution. This paper utilises the case of hydropower plants in India, how the policy and decision-makers can arrive at the selection of the best location for an infrastructure project. According to the assessment value, Teesta Low Dam IV (Darjeeling, West Bengal) isthe preferred hydropower plantfor all selected methods. The State could bring social justice, ecological stability; achieve economic benefits and sustainability by appropriating this proposed model in other development fields.

Suggested Citation

  • Singh, Shweta & Upadhyay, Surya Prakash & Powar, Satvasheel, 2022. "Developing an integrated social, economic, environmental, and technical analysis model for sustainable development using hybrid multi-criteria decision making methods," Applied Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921014999
    DOI: 10.1016/j.apenergy.2021.118235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921014999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hussain, Abid & Sarangi, Gopal K. & Pandit, Anju & Ishaq, Sultan & Mamnun, Nabir & Ahmad, Bashir & Jamil, Muhammad Khalid, 2019. "Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 446-461.
    2. de Faria, Felipe A.M. & Davis, Alex & Severnini, Edson & Jaramillo, Paulina, 2017. "The local socio-economic impacts of large hydropower plant development in a developing country," Energy Economics, Elsevier, vol. 67(C), pages 533-544.
    3. Nigim, K. & Munier, N. & Green, J., 2004. "Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources," Renewable Energy, Elsevier, vol. 29(11), pages 1775-1791.
    4. Supriyasilp, Thanaporn & Pongput, Kobkiat & Boonyasirikul, Thana, 2009. "Hydropower development priority using MCDM method," Energy Policy, Elsevier, vol. 37(5), pages 1866-1875, May.
    5. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    6. Zenonas Turskis & Nikolaj Goranin & Assel Nurusheva & Seilkhan Boranbayev, 2019. "A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    7. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    8. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    9. Dogmus, Özge Can & Nielsen, Jonas Ø., 2019. "Is the hydropower boom actually taking place? A case study of a South East European country, Bosnia and Herzegovina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 278-289.
    10. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    11. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2016. "GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain," Applied Energy, Elsevier, vol. 171(C), pages 86-102.
    12. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems," Applied Energy, Elsevier, vol. 107(C), pages 412-425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talieh Abdolkhaninezhad & Masoud Monavari & Nematollah Khorasani & Maryam Robati & Forogh Farsad, 2022. "Analysis Indicators of Health-Safety in the Risk Assessment of Landfill with the Combined Method of Fuzzy Multi-Criteria Decision Making and Bow Tie Model," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    2. Dalal Aassouli & Ayodele Akande & Ray Jureidini, 2023. "Comparative Analysis of Sustainable Food Governance and the Alignment of Food Security Policies to Sustainable Development: A Case Study of OIC Countries," Sustainability, MDPI, vol. 15(22), pages 1-27, November.
    3. Jun Luo & Xuebing Zhang & Peiji Shi, 2022. "Land Use Multi-Functionality and Zoning Governance Strategy of Densely Populated Areas in the Upper Reaches of the Yellow River: A Case Study of the Lanzhou–Xining Region, China," Land, MDPI, vol. 11(6), pages 1-23, June.
    4. Yu, Yang & Wu, Shibo & Yu, Jianxing & Xu, Ya & Song, Lin & Xu, Weipeng, 2022. "A hybrid multi-criteria decision-making framework for offshore wind turbine selection: A case study in China," Applied Energy, Elsevier, vol. 328(C).
    5. Wątróbski, Jarosław & Bączkiewicz, Aleksandra & Sałabun, Wojciech, 2022. "New multi-criteria method for evaluation of sustainable RES management," Applied Energy, Elsevier, vol. 324(C).
    6. Mateo Barrera-Zapata & Fabian Zuñiga-Cortes & Eduardo Caicedo-Bravo, 2023. "A Framework for Evaluating Renewable Energy for Decision-Making Integrating a Hybrid FAHP-TOPSIS Approach: A Case Study in Valle del Cauca, Colombia," Data, MDPI, vol. 8(9), pages 1-21, August.
    7. Chen, Yixuan & Hou, Yunhe, 2022. "Fast yet balanced trade-offs for multi-timescale multi-objective economic-environmental dispatch under varying conflicts," Applied Energy, Elsevier, vol. 328(C).
    8. Chuan Li & Liangrong Song, 2022. "Regional Differences and Spatial Convergence of Green Development in China," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    9. Junbin Wang, 2022. "Drivers of the Sustainable Development of Agro-industrial Parks: Evidence from Jiangsu Province, China," SAGE Open, , vol. 12(4), pages 21582440221, December.
    10. Favi, Claudio & Marconi, Marco & Mandolini, Marco & Germani, Michele, 2022. "Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework," Applied Energy, Elsevier, vol. 312(C).
    11. Deveci, Muhammet & Pamucar, Dragan & Oguz, Elif, 2022. "Floating photovoltaic site selection using fuzzy rough numbers based LAAW and RAFSI model," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    3. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    4. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    5. Rezaei, Mohsen, 2022. "Prioritization of biodiesel development policies under hybrid uncertainties: A possibilistic stochastic multi-attribute decision-making approach," Energy, Elsevier, vol. 260(C).
    6. Wątróbski, Jarosław & Bączkiewicz, Aleksandra & Sałabun, Wojciech, 2022. "New multi-criteria method for evaluation of sustainable RES management," Applied Energy, Elsevier, vol. 324(C).
    7. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    8. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    9. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.
    10. Zhou, Jianli & Wu, Yunna & Tao, Yao & Gao, Jianwei & Zhong, Zhiming & Xu, Chuanbo, 2021. "Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: An empirical study in China," Energy, Elsevier, vol. 225(C).
    11. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    12. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    13. Geovanna Villacreses & Diego Jijón & Juan Francisco Nicolalde & Javier Martínez-Gómez & Franz Betancourt, 2022. "Multicriteria Decision Analysis of Suitable Location for Wind and Photovoltaic Power Plants on the Galápagos Islands," Energies, MDPI, vol. 16(1), pages 1-23, December.
    14. Gómez Romero, José Andrés & Soto Flores, Rocío & Garduño Román, Susana, 2020. "Selección de un modelo para evaluar la sostenibilidad hidroeléctrica mediante el método AHP || Selection of a model to evaluate hydroelectric sustainability through the AHP method," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 30(1), pages 117-141, December.
    15. Thushara, De Silva M. & Hornberger, George M. & Baroud, Hiba, 2019. "Decision analysis to support the choice of a future power generation pathway for Sri Lanka," Applied Energy, Elsevier, vol. 240(C), pages 680-697.
    16. Doljak, Dejan & Stanojević, Gorica, 2017. "Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia," Energy, Elsevier, vol. 127(C), pages 291-300.
    17. Moiz, Abdul & Kawasaki, Akiyuki & Koike, Toshio & Shrestha, Maheswor, 2018. "A systematic decision support tool for robust hydropower site selection in poorly gauged basins," Applied Energy, Elsevier, vol. 224(C), pages 309-321.
    18. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    19. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    20. Shorabeh, Saman Nadizadeh & Firozjaei, Mohammad Karimi & Nematollahi, Omid & Firozjaei, Hamzeh Karimi & Jelokhani-Niaraki, Mohammadreza, 2019. "A risk-based multi-criteria spatial decision analysis for solar power plant site selection in different climates: A case study in Iran," Renewable Energy, Elsevier, vol. 143(C), pages 958-973.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921014999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.