IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp423-436.html
   My bibliography  Save this article

Distributive PV trading market in China: A design of multi-agent-based model and its forecast analysis

Author

Listed:
  • Chen, Peipei
  • Wu, Yi
  • Zou, Lele

Abstract

China's photovoltaic power generation has experienced an ever-growing speed recently while fast expansion also exposed problems like insufficient power consumption and subsidy gaps in the finance of the government. Now the pilot project for promoting the distributed PV trading market was proposed to address the problem. Accordingly, this study simulates the trading market by analysing the economic behaviours of various agents in an expanded multi-agent-based model with extensions of local consumption principle and matchmaking bidding, which explores the interactions between agents, the trading market and the environment. This study documents that: (1) the trading market can be successfully implemented with the descending subsidy and the grid parity target; (2) the trading market can significantly facilitate local power consumption and release the burden of PV abandonment (e.g. the simulation implies that the abandonment rate of PV in the Gansu Province in 2018 could be reduced from 10.3% to 6%); (3) All firms gain considerable profits after the trading market introduced, and the government also achieves significant benefits from carbon emissions abatement; (4) the power grid suffers from negative margins while the downward trend would eventually end. This raises new perspectives on proposing proper incentive mechanisms like the system of permitted income.

Suggested Citation

  • Chen, Peipei & Wu, Yi & Zou, Lele, 2019. "Distributive PV trading market in China: A design of multi-agent-based model and its forecast analysis," Energy, Elsevier, vol. 185(C), pages 423-436.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:423-436
    DOI: 10.1016/j.energy.2019.07.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219314094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallego-Castillo, Cristobal & Victoria, Marta, 2015. "Cost-free feed-in tariffs for renewable energy deployment in Spain," Renewable Energy, Elsevier, vol. 81(C), pages 411-420.
    2. Newbery, David, 2017. "Tales of two islands – Lessons for EU energy policy from electricity market reforms in Britain and Ireland," Energy Policy, Elsevier, vol. 105(C), pages 597-607.
    3. Grau, Thilo & Huo, Molin & Neuhoff, Karsten, 2012. "Survey of photovoltaic industry and policy in Germany and China," Energy Policy, Elsevier, vol. 51(C), pages 20-37.
    4. Newbery, David M., 2016. "Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system – Lessons from the UK’s Electricity Market Reform," Applied Energy, Elsevier, vol. 179(C), pages 1321-1330.
    5. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Sarmah, Nabin & Mallick, Tapas Kumar & , 2014. "Feed-in tariff for solar photovoltaic: The rise of Japan," Renewable Energy, Elsevier, vol. 68(C), pages 636-643.
    6. Fichera, Alberto & Pluchino, Alessandro & Volpe, Rosaria, 2018. "A multi-layer agent-based model for the analysis of energy distribution networks in urban areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 710-725.
    7. Bunn, Derek W. & Martoccia, Maria, 2005. "Unilateral and collusive market power in the electricity pool of England and Wales," Energy Economics, Elsevier, vol. 27(2), pages 305-315, March.
    8. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Liu, G.Q., 2016. "Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis," Energy Policy, Elsevier, vol. 97(C), pages 181-192.
    9. Philipsen, Rens & Morales-España, Germán & de Weerdt, Mathijs & de Vries, Laurens, 2019. "Trading power instead of energy in day-ahead electricity markets," Applied Energy, Elsevier, vol. 233, pages 802-815.
    10. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    11. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
    12. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    13. Cheng, Chuntian & Chen, Fu & Li, Gang & Ristić, Bora & Mirchi, Ali & Qiyu, Tu & Madani, Kaveh, 2018. "Reform and renewables in China: The architecture of Yunnan's hydropower dominated electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 682-693.
    14. Sarıca, Kemal & Kumbaroğlu, Gürkan & Or, Ilhan, 2012. "Modeling and analysis of a decentralized electricity market: An integrated simulation/optimization approach," Energy, Elsevier, vol. 44(1), pages 830-852.
    15. Bunn, Derek & Yusupov, Tim, 2015. "The progressive inefficiency of replacing renewable obligation certificates with contracts-for-differences in the UK electricity market," Energy Policy, Elsevier, vol. 82(C), pages 298-309.
    16. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2017. "Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach," Energy Policy, Elsevier, vol. 102(C), pages 30-40.
    17. Santos, Gabriel & Pinto, Tiago & Praça, Isabel & Vale, Zita, 2016. "MASCEM: Optimizing the performance of a multi-agent system," Energy, Elsevier, vol. 111(C), pages 513-524.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    2. Ying Wang & Lidan Tian & Junrong Xia & Weishi Zhang & Kaifeng Zhang, 2020. "Economic Assessment of the Peer-to-Peer Trading Policy of Distributed PV Electricity: A Case Study in China," Sustainability, MDPI, vol. 12(13), pages 1-22, June.
    3. Ding, Kun & Chen, Xiang & Weng, Shuai & Liu, Yongjie & Zhang, Jingwei & Li, Yuanliang & Yang, Zenan, 2023. "Health status evaluation of photovoltaic array based on deep belief network and Hausdorff distance," Energy, Elsevier, vol. 262(PB).
    4. Wu, Jiahui & Wang, Jidong & Kong, Xiangyu, 2022. "Strategic bidding in a competitive electricity market: An intelligent method using Multi-Agent Transfer Learning based on reinforcement learning," Energy, Elsevier, vol. 256(C).
    5. Song, Yazhi & Liu, Tiansen & Ye, Bin & Li, Yin, 2020. "Linking carbon market and electricity market for promoting the grid parity of photovoltaic electricity in China," Energy, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    2. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    3. Shen, Jian-jian & Cheng, Chun-tian & Jia, Ze-bin & Zhang, Yang & Lv, Quan & Cai, Hua-xiang & Wang, Bang-can & Xie, Meng-fei, 2022. "Impacts, challenges and suggestions of the electricity market for hydro-dominated power systems in China," Renewable Energy, Elsevier, vol. 187(C), pages 743-759.
    4. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    5. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    6. Pappachen, Abhijith & Peer Fathima, A., 2017. "Critical research areas on load frequency control issues in a deregulated power system: A state-of-the-art-of-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 163-177.
    7. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    8. Zou, Hongyang & Du, Huibin & Ren, Jingzheng & Sovacool, Benjamin K. & Zhang, Yongjie & Mao, Guozhu, 2017. "Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 197-206.
    9. Lin-Ju Chen & Lei Zhu & Ying Fan & Sheng-Hua Cai, 2013. "Long-Term Impacts of Carbon Tax and Feed-in Tariff Policies on China's Generating Portfolio and Carbon Emissions: A Multi-Agent-Based Analysis," Energy & Environment, , vol. 24(7-8), pages 1271-1293, December.
    10. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    11. Patrice Bougette and Christophe Charlier, 2018. "Antidumping and Feed-In Tariffs as Good Buddies? Modeling the EU-China Solar Panel Dispute," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    12. Wen, Daoyuan & Gao, Weijun & Kuroki, Soichiro & Gu, Qunyin & Ren, Jianxing, 2021. "The effects of the new Feed-In Tariff Act for solar photovoltaic (PV) energy in the wake of the Fukushima accident in Japan," Energy Policy, Elsevier, vol. 156(C).
    13. Junjun Zheng & Mingmiao Yang & Gang Ma & Qian Xu & Yujie He, 2020. "Multi-Agents-Based Modeling and Simulation for Carbon Permits Trading in China: A Regional Development Perspective," IJERPH, MDPI, vol. 17(1), pages 1-20, January.
    14. Angelopoulos, Dimitrios & Doukas, Haris & Psarras, John & Stamtsis, Giorgos, 2017. "Risk-based analysis and policy implications for renewable energy investments in Greece," Energy Policy, Elsevier, vol. 105(C), pages 512-523.
    15. Weng, Qingqing & Xu, He, 2018. "A review of China’s carbon trading market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 613-619.
    16. Wei, Yigang & Liang, Xin & Xu, Liang & Kou, Gang & Chevallier, Julien, 2023. "Trading, storage, or penalty? Uncovering firms' decision-making behavior in the Shanghai emissions trading scheme: Insights from agent-based modeling," Energy Economics, Elsevier, vol. 117(C).
    17. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    18. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    19. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    20. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    21. Sakah, Marriette & Diawuo, Felix Amankwah & Katzenbach, Rolf & Gyamfi, Samuel, 2017. "Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 544-557.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:423-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.