IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v51y2005i1p31-62.html
   My bibliography  Save this article

Learning, information, and sorting in market entry games: theory and evidence

Author

Listed:
  • Duffy, John
  • Hopkins, Ed

Abstract

Previous data from experiments on market entry games, N-player games where each player faces a choice between entering a market and staying out, appear inconsistent with either mixed or pure Nash equilibria. Here we show that, in this class of game, learning theory predicts sorting, that is, in the long run, agents play a pure strategy equilibrium with some agents permanently in the market, and some permanently out. We conduct experiments with a larger number of repetitions than in previous work in order to test this prediction. We find that when subjects are given minimal information, only after close to 100 periods do subjects begin to approach equilibrium. In contrast, with full information, subjects learn to play a pure strategy equilibrium relatively quickly. However, the information which permits rapid convergence, revelation of the individual play of all opponents, is not predicted to have any effect by existing models of learning.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
  • Handle: RePEc:eee:gamebe:v:51:y:2005:i:1:p:31-62
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(04)00075-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. Hopkins, Ed & Posch, Martin, 2005. "Attainability of boundary points under reinforcement learning," Games and Economic Behavior, Elsevier, vol. 53(1), pages 110-125, October.
    3. Sundali, James A. & Rapoport, Amnon & Seale, Darryl A., 1995. "Coordination in Market Entry Games with Symmetric Players," Organizational Behavior and Human Decision Processes, Elsevier, vol. 64(2), pages 203-218, November.
    4. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    5. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    6. Rapoport, Amnon & Seale, Darryl A. & Winter, Eyal, 2002. "Coordination and Learning Behavior in Large Groups with Asymmetric Players," Games and Economic Behavior, Elsevier, vol. 39(1), pages 111-136, April.
    7. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    8. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
    9. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    10. Fernando Vega-Redondo, 1997. "The Evolution of Walrasian Behavior," Econometrica, Econometric Society, vol. 65(2), pages 375-384, March.
    11. Christopher M. Anderson & Colin F. Camerer, 2000. "Experience-weighted attraction learning in sender-receiver signaling games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 16(3), pages 689-718.
    12. Amnon Rapoport & Darryl A. Seale & Ido Erev & James A. Sundali, 1998. "Equilibrium Play in Large Group Market Entry Games," Management Science, INFORMS, vol. 44(1), pages 119-141, January.
    13. Darryl Seale & Amnon Rapoport, 2000. "Elicitation of Strategy Profiles in Large Group Coordination Games," Experimental Economics, Springer;Economic Science Association, vol. 3(2), pages 153-179, October.
    14. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
    15. Dan Lovallo & Colin Camerer, 1999. "Overconfidence and Excess Entry: An Experimental Approach," American Economic Review, American Economic Association, vol. 89(1), pages 306-318, March.
    16. Eyal Winter & Amnon Rapoport & Darryl A. Seale, 2000. "An experimental study of coordination and learning in iterated two-market entry games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 16(3), pages 661-687.
    17. Sarin, Rajiv & Vahid, Farshid, 1999. "Payoff Assessments without Probabilities: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 28(2), pages 294-309, August.
    18. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willemien Kets, 2007. "The minority game: An economics perspective," Papers 0706.4432, arXiv.org.
    2. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    3. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    4. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    5. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    6. Hopkins, Ed, 2007. "Adaptive learning models of consumer behavior," Journal of Economic Behavior & Organization, Elsevier, vol. 64(3-4), pages 348-368.
    7. Naoki Funai, 2019. "Convergence results on stochastic adaptive learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 907-934, November.
    8. Josephson, Jens, 2008. "A numerical analysis of the evolutionary stability of learning rules," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1569-1599, May.
    9. Dridi, Slimane & Lehmann, Laurent, 2014. "On learning dynamics underlying the evolution of learning rules," Theoretical Population Biology, Elsevier, vol. 91(C), pages 20-36.
    10. Zhang, Yang & Du, Xiaomin, 2017. "Network effects on strategic interactions: A laboratory approach," Journal of Economic Behavior & Organization, Elsevier, vol. 143(C), pages 133-146.
    11. Garcia-Pola, Bernardo & Iriberri, Nagore, 2019. "Naivete and Sophistication in Initial and Repeated Play in Games," CEPR Discussion Papers 14088, C.E.P.R. Discussion Papers.
    12. Teck H. Ho & Noah Lim & Colin Camerer, 2005. "Modeling the Psychology of Consumer and Firm Behavior with Behavioral Economics," Levine's Bibliography 784828000000000476, UCLA Department of Economics.
    13. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    14. Naoki Funai, 2013. "An Adaptive Learning Model in Coordination Games," Discussion Papers 13-14, Department of Economics, University of Birmingham.
    15. Ed Hopkins, 2002. "Adaptive Learning Models of Consumer Behaviour (first version)," Edinburgh School of Economics Discussion Paper Series 80, Edinburgh School of Economics, University of Edinburgh.
    16. Mario Bravo & Mathieu Faure, 2013. "Reinforcement Learning with Restrictions on the Action Set," AMSE Working Papers 1335, Aix-Marseille School of Economics, France, revised 01 Jul 2013.
    17. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    18. Gunnthorsdottir, Anna & Rapoport, Amnon, 2006. "Embedding social dilemmas in intergroup competition reduces free-riding," Organizational Behavior and Human Decision Processes, Elsevier, vol. 101(2), pages 184-199, November.
    19. Jim Engle-Warnick & Ed Hopkins, 2006. "A Simple Test of Learning Theory," Levine's Bibliography 321307000000000724, UCLA Department of Economics.
    20. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:51:y:2005:i:1:p:31-62. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.