IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Q-learning agents in a Cournot oligopoly model

  • Waltman, Ludo
  • Kaymak, Uzay

No abstract is available for this item.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(08)00018-3
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 32 (2008)
Issue (Month): 10 (October)
Pages: 3275-3293

as
in new window

Handle: RePEc:eee:dyncon:v:32:y:2008:i:10:p:3275-3293
Contact details of provider: Web page: http://www.elsevier.com/locate/jedc

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Fernando Vega Redondo, 1996. "The evolution of walrasian behavior," Working Papers. Serie AD 1996-05, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  2. Leigh Tesfatsion, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Computing in Economics and Finance 2006 527, Society for Computational Economics.
  3. Drew Fudenberg & David K. Levine, 1996. "The Theory of Learning in Games," Levine's Working Paper Archive 624, David K. Levine.
  4. Steffen Huck & Hans-Theo Normann & Joerg Oechssler, 2004. "Through Trial and Error to Collusion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(1), pages 205-224, 02.
  5. Steffen Huck & Hans-Theo Normann & Jörg Oechssler, 2001. "Two are Few and Four are Many: Number Effects in Experimental Oligopolies," Bonn Econ Discussion Papers bgse12_2001, University of Bonn, Germany.
  6. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
  7. Barry Sopher & Dilip Mookherjee, 1997. "Learning and Decision Costs in Experimental Constant Sum Games," Departmental Working Papers 199527, Rutgers University, Department of Economics.
  8. Bell, Ann Maria, 2001. "Reinforcement Learning Rules in a Repeated Game," Computational Economics, Springer;Society for Computational Economics, vol. 18(1), pages 89-110, August.
  9. Brock, W.A., 1995. "A Rational Route to Randomness," Working papers 9530, Wisconsin Madison - Social Systems.
  10. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
  11. Droste, E. & Hommes, C.H. & Tuinstra, J., 1999. "Endogenous Fluctuations under Evolutionary Pressure in Cournot Competition," CeNDEF Working Papers 99-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  12. Sarin, Rajiv & Vahid, Farshid, 2001. "Predicting How People Play Games: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 34(1), pages 104-122, January.
  13. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
  14. Oechssler, Jorg, 2002. "Cooperation as a result of learning with aspiration levels," Journal of Economic Behavior & Organization, Elsevier, vol. 49(3), pages 405-409, November.
  15. Hofbauer,J. & Sandholm,W.H., 2003. "Evolution in games with randomly disturbed payoffs," Working papers 20, Wisconsin Madison - Social Systems.
  16. Brenner, Thomas, 2006. "Agent Learning Representation: Advice on Modelling Economic Learning," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 18, pages 895-947 Elsevier.
  17. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-81, September.
  18. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
  19. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011 Elsevier.
  20. Sarin, Rajiv & Vahid, Farshid, 1999. "Payoff Assessments without Probabilities: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 28(2), pages 294-309, August.
  21. Dixon, Huw David, 2000. "Keeping up with the Joneses: competition and the evolution of collusion," Journal of Economic Behavior & Organization, Elsevier, vol. 43(2), pages 223-238, October.
  22. Kirman, Alan P. & Vriend, Nicolaas J., 2001. "Evolving market structure: An ACE model of price dispersion and loyalty," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 459-502, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:32:y:2008:i:10:p:3275-3293. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.