IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Rage Against the Machines: How Subjects Learn to Play Against Computers

Listed author(s):
  • Peter Duersch

    (Department of Economics, University of Heidelberg)

  • Albert Kolb

    (Department of Economics, University of Bonn)

  • Joerg Oechssler

    (Department of Economics, University of Heidelberg)

  • Burkhard Schipper

    (Department of Economics, University of California)

We use an experiment to explore how subjects learn to play against computers which are programmed to follow one of a number of standard learning algorithms. The learning theories are (unbeknown to subjects) a best response process, fictitious play, imitation, reinforcement learning, and a trial & error process. We test whether subjects try to influence those algorithms to their advantage in a forward-looking way (strategic teaching). We find that strategic teaching occurs frequently and that all learning algorithms are subject to exploitation with the notable exception of imitation. The experiment was conducted, both, on the internet and in the usual laboratory setting. We find some systematic differences, which however can be traced to the different incentives structures rather than the experimental environment.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://econwpa.repec.org/eps/game/papers/0510/0510012.pdf
Download Restriction: no

Paper provided by EconWPA in its series Game Theory and Information with number 0510012.

as
in new window

Length: 43 pages
Date of creation: 25 Oct 2005
Handle: RePEc:wpa:wuwpga:0510012
Note: Type of Document - pdf; pages: 43
Contact details of provider: Web page: http://econwpa.repec.org

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
  2. Kirchkamp, Oliver & Nagel, Rosemarie, 2005. "Learning and cooperation in network experiments," Sonderforschungsbereich 504 Publications 05-27, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
  3. Laslier, Jean-Francois & Topol, Richard & Walliser, Bernard, 2001. "A Behavioral Learning Process in Games," Games and Economic Behavior, Elsevier, vol. 37(2), pages 340-366, November.
  4. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
  5. Huck, Steffen & Normann, Hans-Theo & Oechssler, Jorg, 1999. "Learning in Cournot Oligopoly--An Experiment," Economic Journal, Royal Economic Society, vol. 109(454), pages 80-95, March.
  6. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945.
  7. Schipper, Burkhard C., 2005. "Imitators and Optimizers in Cournot Oligopoly," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 53, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
  8. Vahid, F. & Sarin, R., 2001. "Strategy Similarity and Coordination," Monash Econometrics and Business Statistics Working Papers 8/01, Monash University, Department of Econometrics and Business Statistics.
  9. Mathias Drehmann & Joerg Oechssler & Andreas Roider, 2002. "Herding and Contrarian Behavior in Financial Markets - An Internet Experiment," Finance 0210005, EconWPA.
  10. Schipper, Burkhard C, 2011. "Strategic control of myopic best reply in repeated games," MPRA Paper 30219, University Library of Munich, Germany.
  11. Theo Offerman & Jan Potters & Joep Sonnemans, 1997. "Imitation and Belief Learning in an Oligopoly Experiment," Tinbergen Institute Discussion Papers 97-116/1, Tinbergen Institute.
  12. Glen Ellison, 2010. "Learning from Personal Experience: One Rational Guy and the Justification of Myopia," Levine's Working Paper Archive 413, David K. Levine.
  13. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
  14. Apesteguia, Jose & Huck, Steffen & Oechssler, Jorg, 2007. "Imitation--theory and experimental evidence," Journal of Economic Theory, Elsevier, vol. 136(1), pages 217-235, September.
  15. Kirchkamp, Oliver & Nagel, Rosemarie, 2007. "Naive learning and cooperation in network experiments," Games and Economic Behavior, Elsevier, vol. 58(2), pages 269-292, February.
  16. Fernando Vega-Redondo, 1997. "The Evolution of Walrasian Behavior," Econometrica, Econometric Society, vol. 65(2), pages 375-384, March.
  17. Steffen Huck & Hans-Theo Normann & Jörg Oechssler, 2001. "Two are Few and Four are Many: Number Effects in Experimental Oligopolies," Bonn Econ Discussion Papers bgse12_2001, University of Bonn, Germany.
  18. Alos-Ferrer, Carlos, 2004. "Cournot versus Walras in dynamic oligopolies with memory," International Journal of Industrial Organization, Elsevier, vol. 22(2), pages 193-217, February.
  19. Roth, Alvin E & Schoumaker, Francoise, 1983. "Expectations and Reputations in Bargaining: An Experimental Study," American Economic Review, American Economic Association, vol. 73(3), pages 362-372, June.
  20. Drew Fudenberg & David K. Levine, 1998. "Learning in Games," Levine's Working Paper Archive 2222, David K. Levine.
  21. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
  22. Jason Shachat & J. Todd Swarthout, 2011. "Learning about learning in games through experimental control of strategic interdependence," Working Papers 1103, Xiamen Unversity, The Wang Yanan Institute for Studies in Economics, Finance and Economics Experimental Laboratory, revised 28 Apr 2011.
  23. Steffen Huck & Hans-Theo Normann & Joerg Oechssler, 2004. "Through Trial and Error to Collusion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(1), pages 205-224, 02.
  24. McCabe, Kevin & Houser, Daniel & Ryan, Lee & Smith, Vernon & Trouard, Ted, 2001. "A Functional Imaging Study of Cooperation in Two-Person reciprocal Exchange," MPRA Paper 5172, University Library of Munich, Germany.
  25. Daniel Houser & Robert Kurzban, 2002. "Revisiting Kindness and Confusion in Public Goods Experiments," American Economic Review, American Economic Association, vol. 92(4), pages 1062-1069, September.
  26. Walker, James M. & Smith, Vernon L. & Cox, James C., 1987. "Bidding behavior in first price sealed bid auctions : Use of computerized Nash competitors," Economics Letters, Elsevier, vol. 23(3), pages 239-244.
  27. Huck, Steffen & Oechssler, Jörg & Normann, Hans-Theo, 1999. "Through trial & error to collusion," SFB 373 Discussion Papers 1999,57, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  28. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 0203, Economics Division, School of Social Sciences, University of Southampton.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0510012. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.