IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v37y2001i2p340-366.html
   My bibliography  Save this article

A Behavioral Learning Process in Games

Author

Listed:
  • Laslier, Jean-Francois
  • Topol, Richard
  • Walliser, Bernard

Abstract

The paper studies a behavioral learning process where an agent plays, at each period, an action with a probability which is proportional to the cumulative utility he got in the past with that action. The so-called CPR learning rule and the dynamic process it induces are formally stated and compared to other reinforcement rules as well as to fictitious play or the replicator dynamics.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Laslier, Jean-Francois & Topol, Richard & Walliser, Bernard, 2001. "A Behavioral Learning Process in Games," Games and Economic Behavior, Elsevier, vol. 37(2), pages 340-366, November.
  • Handle: RePEc:eee:gamebe:v:37:y:2001:i:2:p:340-366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(00)90841-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. Borgers, Tilman & Sarin, Rajiv, 2000. "Naive Reinforcement Learning with Endogenous Aspirations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 921-950, November.
    3. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-666, May.
    4. Martin Posch, 1997. "Cycling in a stochastic learning algorithm for normal form games," Journal of Evolutionary Economics, Springer, vol. 7(2), pages 193-207.
    5. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    6. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    7. Kaniovski Yuri M. & Young H. Peyton, 1995. "Learning Dynamics in Games with Stochastic Perturbations," Games and Economic Behavior, Elsevier, vol. 11(2), pages 330-363, November.
    8. John G. Cross, 1973. "A Stochastic Learning Model of Economic Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 87(2), pages 239-266.
    9. Nachbar, J H, 1990. ""Evolutionary" Selection Dynamics in Games: Convergence and Limit Properties," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(1), pages 59-89.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:37:y:2001:i:2:p:340-366. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.