IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Attainability of Boundary Points under Reinforcement Learning

  • Ed Hopkins
  • Martin Posch

This paper investigates the properties of the most common form of reinforcement learning (the "basic model" of Erev and Roth, American Economic Review, 88, 848-881, 1998). Stochastic approximation theory has been used to analyse the local stability of fixed points under this learning process. However, as we show, when such points are on the boundary of the state space, for example, pure strategy equilibria, standard results from the theory of stochastic approximation do not apply. We offer what we believe to be the correct treatment of boundary points, and provide a new and more general result: this model of learning converges with zero probability to fixed points which are unstable under the Maynard Smith or adjusted version of the evolutionary replicator dynamics. For two player games these are the fixed points that are linearly unstable under the standard replicator dynamics.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.dklevine.com/archive/refs4506439000000000350.pdf
Download Restriction: no

Paper provided by David K. Levine in its series Levine's Working Paper Archive with number 506439000000000350.

as
in new window

Length:
Date of creation: 20 Feb 2003
Date of revision:
Handle: RePEc:cla:levarc:506439000000000350
Contact details of provider: Web page: http://www.dklevine.com/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ed Hopkins, 2004. "Two Competing Models of How People Learn in Games," ESE Discussion Papers 51, Edinburgh School of Economics, University of Edinburgh.
  2. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
  3. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
  4. Laslier, J.-F. & Topol, R. & Walliser, B., 1999. "A Behavioral Learning Process in Games," Papers 99-03, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..
  5. John Duffy & Ed Hopkins, 2004. "Learning, Information and Sorting in Market Entry Games: Theory and Evidence," ESE Discussion Papers 78, Edinburgh School of Economics, University of Edinburgh.
  6. Rustichini, Aldo, 1999. "Optimal Properties of Stimulus--Response Learning Models," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 244-273, October.
  7. Ellison, Glenn & Fudenberg, Drew, 2000. "Learning Purified Mixed Equilibria," Journal of Economic Theory, Elsevier, vol. 90(1), pages 84-115, January.
  8. Martin Posch, 1997. "Cycling in a stochastic learning algorithm for normal form games," Journal of Evolutionary Economics, Springer, vol. 7(2), pages 193-207.
  9. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
  10. Josef Hofbauer & Ed Hopkins, 2004. "Learning in Perturbed Asymmetric Games," ESE Discussion Papers 53, Edinburgh School of Economics, University of Edinburgh.
  11. Sandholm, William H, 2002. "Evolutionary Implementation and Congestion Pricing," Review of Economic Studies, Wiley Blackwell, vol. 69(3), pages 667-89, July.
  12. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-81, September.
  13. Arthur, W Brian, 1993. "On Designing Economic Agents That Behave Like Human Agents," Journal of Evolutionary Economics, Springer, vol. 3(1), pages 1-22, February.
  14. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
  15. Sarin, Rajiv & Vahid, Farshid, 1999. "Payoff Assessments without Probabilities: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 28(2), pages 294-309, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cla:levarc:506439000000000350. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.