IDEAS home Printed from https://ideas.repec.org/p/cla/levarc/625018000000000226.html
   My bibliography  Save this paper

Two Competing Models of How People Learn in Games

Author

Listed:
  • Ed Hopkins

Abstract

Reinforcement learning and stochastic fictitious play are apparent rivals as models of human learning. They embody quite different assumptions about the processing of information and optimization. This paper compares their properties and finds that they are far more similar than were thought. In particular, the expected motion of stochastic fictitious play and reinforcement learning with experimentation can both be written as a perturbed form of the evolutionary replicator dynamics. Therefore they will in many cases have the same asymptotic behavior. In particular, local stability of mixed equilibria under stochastic fictitious play implies local stability under perturbed reinforcement learning. The main identifiable difference between the two models is speed: stochastic fictitious play gives rise to faster learning. Copyright The Econometric Society 2002.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of th
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Ed Hopkins, 2001. "Two Competing Models of How People Learn in Games," Levine's Working Paper Archive 625018000000000226, David K. Levine.
  • Handle: RePEc:cla:levarc:625018000000000226
    as

    Download full text from publisher

    File URL: http://www.dklevine.com/archive/refs4625018000000000226.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sarin, Rajiv & Vahid, Farshid, 2001. "Predicting How People Play Games: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 34(1), pages 104-122, January.
    2. Dekel, Eddie & Fudenberg, Drew & Levine, David K., 1999. "Payoff Information and Self-Confirming Equilibrium," Journal of Economic Theory, Elsevier, vol. 89(2), pages 165-185, December.
    3. Nick Feltovich & John Duffy, 1999. "Does observation of others affect learning in strategic environments? An experimental study," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(1), pages 131-152.
    4. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    5. Rustichini, Aldo, 1999. "Optimal Properties of Stimulus--Response Learning Models," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 244-273, October.
    6. Ellison, Glenn & Fudenberg, Drew, 2000. "Learning Purified Mixed Equilibria," Journal of Economic Theory, Elsevier, vol. 90(1), pages 84-115, January.
    7. Gaunersdorfer Andrea & Hofbauer Josef, 1995. "Fictitious Play, Shapley Polygons, and the Replicator Equation," Games and Economic Behavior, Elsevier, vol. 11(2), pages 279-303, November.
    8. Martin Posch, 1997. "Cycling in a stochastic learning algorithm for normal form games," Journal of Evolutionary Economics, Springer, vol. 7(2), pages 193-207.
    9. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    10. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    11. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    12. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    13. Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
    14. Ken Binmore & Larry Samuelson, 1999. "Evolutionary Drift and Equilibrium Selection," Review of Economic Studies, Oxford University Press, vol. 66(2), pages 363-393.
    15. David J. Cooper & Susan Garvin & John H. Kagel, 1997. "Signalling and Adaptive Learning in an Entry Limit Pricing Game," RAND Journal of Economics, The RAND Corporation, vol. 28(4), pages 662-683, Winter.
    16. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    17. Vriend, Nicolaas J., 1997. "Will reasoning improve learning?," Economics Letters, Elsevier, vol. 55(1), pages 9-18, August.
    18. Gale, John & Binmore, Kenneth G. & Samuelson, Larry, 1995. "Learning to be imperfect: The ultimatum game," Games and Economic Behavior, Elsevier, vol. 8(1), pages 56-90.
    19. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
    20. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    21. Andreas Blume & Douglas V. DeJong & George R. Neumann & N. E. Savin, 2002. "Learning and communication in sender-receiver games: an econometric investigation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(3), pages 225-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    2. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    3. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    4. Battalio,R. & Samuelson,L. & Huyck,J. van, 1998. "Risk dominance, payoff dominance and probabilistic choice learning," Working papers 2, Wisconsin Madison - Social Systems.
    5. Hopkins, Ed & Posch, Martin, 2005. "Attainability of boundary points under reinforcement learning," Games and Economic Behavior, Elsevier, vol. 53(1), pages 110-125, October.
    6. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 0203, Economics Division, School of Social Sciences, University of Southampton.
    7. Jim Engle-Warnick & Ed Hopkins, 2006. "A Simple Test of Learning Theory," Levine's Bibliography 321307000000000724, UCLA Department of Economics.
    8. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    9. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    10. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    11. Naoki Funai, 2019. "Convergence results on stochastic adaptive learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 907-934, November.
    12. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    13. Dai, Darong, 2012. "Learning Nash Equilibria," MPRA Paper 40040, University Library of Munich, Germany.
    14. Shafran, Aric P., 2012. "Learning in games with risky payoffs," Games and Economic Behavior, Elsevier, vol. 75(1), pages 354-371.
    15. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    16. Rami Zwick & Amnon Rapoport, 2002. "Tacit Coordination in a Decentralized Market Entry Game with Fixed Capacity," Experimental Economics, Springer;Economic Science Association, vol. 5(3), pages 253-272, December.
    17. Mohlin, Erik & Östling, Robert & Wang, Joseph Tao-yi, 2020. "Learning by similarity-weighted imitation in winner-takes-all games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 225-245.
    18. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    19. Wolf Ze'ev Ehrblatt & Kyle Hyndman & Erkut Y. ÄOzbay & Andrew Schotter, 2006. "Convergence: An Experimental Study," Levine's Working Paper Archive 122247000000001148, David K. Levine.
    20. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, Open Access Journal, vol. 9(2), pages 1-67, May.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levarc:625018000000000226. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.dklevine.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David K. Levine (email available below). General contact details of provider: http://www.dklevine.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.