IDEAS home Printed from https://ideas.repec.org/p/fth/harver/1817.html

Learning Purified Mixed Equilibria

Author

Listed:
  • Glenn Ellison
  • Drew Fudenberg

Abstract

better understand when mixed equilibria might arise within populations of interact acting agents, we examine a model of smoothed fictitious play that is designed to capture Harsanyi's "Purification", view of mixed equilibria in a setting with a large population of agents. Our analysis concerns the local stability of equilibria when the degree of heterogeneity in the population is small. In 2 x 2 games our model is easy to analyze and yields the same conclusions as have previous models. Our primary focus is on 3 x 3 games where we provide a general characterization of which equilibria are locally stable, and discuss its implications in several particular cases. Among our conclusions are that learning can sometimes provide a justification for mixed equilibria outside of 2 x 2 games, that whether an equilibrium is stable or unstable is often dependent on the distribution of payoff heterogeneity in the population, that the totally mixed equilibria of zero sum games are generically stable, and that under a "balanced perturbation" condition the equilibria of symmetric games are generically unstable.

Suggested Citation

  • Glenn Ellison & Drew Fudenberg, 1998. "Learning Purified Mixed Equilibria," Harvard Institute of Economic Research Working Papers 1817, Harvard - Institute of Economic Research.
  • Handle: RePEc:fth:harver:1817
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:harver:1817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/ieharus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.