IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Two More Classes of Games with the Fictitious Play Property

  • Ulrich Berger

    (Vienna University of Economics)

Fictitious play is the oldest and most studied learning process for games. Since the already classical result for zero-sum games, convergence of beliefs to the set of Nash equilibria has been established for some important classes of games, including weighted potential games, supermodular games with diminishing returns, and 3x3 supermodular games. Extending these results, we establish convergence for ordinal potential games and quasi-supermodular games with diminishing returns. As a by-product we obtain convergence for 3xm and 4x4 quasi-supermodular games.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://128.118.178.162/eps/game/papers/0408/0408003.pdf
Download Restriction: no

Paper provided by EconWPA in its series Game Theory and Information with number 0408003.

as
in new window

Length: 17 pages
Date of creation: 31 Aug 2004
Date of revision:
Handle: RePEc:wpa:wuwpga:0408003
Note: Type of Document - pdf; pages: 17
Contact details of provider: Web page: http://128.118.178.162

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
  2. Tetsuo Yamamori & Satoru Takahashi, 2002. "The pure Nash equilibrium property and the quasi-acyclic condition," Economics Bulletin, AccessEcon, vol. 3(22), pages 1-6.
  3. Ulrich Berger, 2002. "Best response dynamics for role games," International Journal of Game Theory, Springer, vol. 30(4), pages 527-538.
  4. Drew Fudenberg & David Kreps, 2010. "Learning Mixed Equilibria," Levine's Working Paper Archive 415, David K. Levine.
  5. Gaunersdorfer Andrea & Hofbauer Josef, 1995. "Fictitious Play, Shapley Polygons, and the Replicator Equation," Games and Economic Behavior, Elsevier, vol. 11(2), pages 279-303, November.
  6. Jordan J. S., 1993. "Three Problems in Learning Mixed-Strategy Nash Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 368-386, July.
  7. Garcia, Alfredo & Reaume, Daniel & Smith, Robert L., 2000. "Fictitious play for finding system optimal routings in dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 147-156, February.
  8. Milgrom, Paul & Roberts, John, 1991. "Adaptive and sophisticated learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 82-100, February.
  9. Monderer, Dov & Samet, Dov & Sela, Aner, 1997. "Belief Affirming in Learning Processes," Journal of Economic Theory, Elsevier, vol. 73(2), pages 438-452, April.
  10. Vives, X., 1988. "Nash Equilibrium With Strategic Complementarities," UFAE and IAE Working Papers 107-88, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  11. Harris, Christopher, 1998. "On the Rate of Convergence of Continuous-Time Fictitious Play," Games and Economic Behavior, Elsevier, vol. 22(2), pages 238-259, February.
  12. Sjostrom, T. & Krishna, V., 1995. "On the Convergence of Ficticious Play," Papers 04-95-07, Pennsylvania State - Department of Economics.
  13. Ulrich Berger, 2003. "Continuous Fictitious Play via Projective Geometry," Game Theory and Information 0303004, EconWPA.
  14. repec:ebl:ecbull:v:3:y:2002:i:22:p:1-6 is not listed on IDEAS
  15. Bulow, Jeremy I & Geanakoplos, John D & Klemperer, Paul D, 1985. "Multimarket Oligopoly: Strategic Substitutes and Complements," Journal of Political Economy, University of Chicago Press, vol. 93(3), pages 488-511, June.
  16. Matsui, Akihiko, 1992. "Best response dynamics and socially stable strategies," Journal of Economic Theory, Elsevier, vol. 57(2), pages 343-362, August.
  17. Monderer, Dov & Sela, Aner, 1996. "A2 x 2Game without the Fictitious Play Property," Games and Economic Behavior, Elsevier, vol. 14(1), pages 144-148, May.
  18. Milgrom, P. & Shannon, C., 1991. "Monotone Comparative Statics," Papers 11, Stanford - Institute for Thoretical Economics.
  19. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
  20. Foster, Dean P. & Young, H. Peyton, 1998. "On the Nonconvergence of Fictitious Play in Coordination Games," Games and Economic Behavior, Elsevier, vol. 25(1), pages 79-96, October.
  21. Metrick, Andrew & Polak, Ben, 1994. "Fictitious Play in 2 x 2 Games: A Geometric Proof of Convergence," Economic Theory, Springer, vol. 4(6), pages 923-33, October.
  22. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
  23. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-67, May.
  24. Ed Hopkins, . "A Note on Best Response Dynamics," ESE Discussion Papers 3, Edinburgh School of Economics, University of Edinburgh.
  25. Berger, Ulrich, 2005. "Fictitious play in 2 x n games," Journal of Economic Theory, Elsevier, vol. 120(2), pages 139-154, February.
  26. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0408003. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.