IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpga/0303009.html
   My bibliography  Save this paper

Fictitious play in 2xn games

Author

Listed:
  • Ulrich Berger

    (Vienna University of Economics)

Abstract

It is known that every continuous time fictitious play process approaches equilibrium in every nondegenerate 2x2 and 2x3 game, and it has been conjectured that convergence to equilibrium holds generally for 2xn games. We give a simple geometric proof of this.

Suggested Citation

  • Ulrich Berger, 2003. "Fictitious play in 2xn games," Game Theory and Information 0303009, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpga:0303009
    Note: Type of Document - pdf-file; pages: 11; figures: included
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/game/papers/0303/0303009.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Monderer, Dov & Sela, Aner, 1997. "Fictitious play and- no-cycling conditions," Sonderforschungsbereich 504 Publications 97-12, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    2. Gaunersdorfer Andrea & Hofbauer Josef, 1995. "Fictitious Play, Shapley Polygons, and the Replicator Equation," Games and Economic Behavior, Elsevier, vol. 11(2), pages 279-303, November.
    3. Harris, Christopher, 1998. "On the Rate of Convergence of Continuous-Time Fictitious Play," Games and Economic Behavior, Elsevier, vol. 22(2), pages 238-259, February.
    4. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-867, May.
    5. Milgrom, Paul & Roberts, John, 1991. "Adaptive and sophisticated learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 82-100, February.
    6. Ulrich Berger, 2003. "Continuous Fictitious Play via Projective Geometry," Game Theory and Information 0303004, University Library of Munich, Germany.
    7. Diana Richards, 1997. "The geometry of inductive reasoning in games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(1), pages 185-193.
    8. Vijay Krishna & Tomas Sjöström, 1998. "On the Convergence of Fictitious Play," Mathematics of Operations Research, INFORMS, vol. 23(2), pages 479-511, May.
    9. Metrick, Andrew & Polak, Ben, 1994. "Fictitious Play in 2 x 2 Games: A Geometric Proof of Convergence," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(6), pages 923-933, October.
    10. Monderer, Dov & Sela, Aner, 1997. "Fictitious play and no-cycling conditions," Papers 97-12, Sonderforschungsbreich 504.
    11. Foster, Dean P. & Young, H. Peyton, 1998. "On the Nonconvergence of Fictitious Play in Coordination Games," Games and Economic Behavior, Elsevier, vol. 25(1), pages 79-96, October.
    12. Matsui, Akihiko, 1992. "Best response dynamics and socially stable strategies," Journal of Economic Theory, Elsevier, vol. 57(2), pages 343-362, August.
    13. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Fictitious Play; Learning Process; 2xn Games;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0303009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.