IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Some Notes on Learning in Games with Strategic Complementarities

  • Ulrich Berger

    (Vienna University of Economics)

Fictitious play is the classical myopic learning process, and games with strategic complementarities are an important class of games including many economic applications. Knowledge about convergence properties of fictitious play in this class of games is scarce, however. Beyond dominance solvable games, global convergence has only been established for games with strategic complementarities and diminishing marginal returns (Krishna, 1992, HBSWorking Paper 92-073). This result is known to depend critically on the assumption of a tie-breaking rule. We show that restricting the analysis to nondegenerate games allows us to drop this assumption. More importantly, an ordinal version of strategic complementarities turns out to suffice. As a byproduct, we also obtain global convergence in generalized ordinal potential games with diminishing marginal returns.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Game Theory and Information with number 0409001.

in new window

Length: 14 pages
Date of creation: 01 Sep 2004
Date of revision:
Handle: RePEc:wpa:wuwpga:0409001
Note: Type of Document - pdf; pages: 14
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Matsui, Akihiko, 1992. "Best response dynamics and socially stable strategies," Journal of Economic Theory, Elsevier, vol. 57(2), pages 343-362, August.
  2. Christopher Harris, 1994. "On theRate of Convergence of Continuous-Time Fictitious Play," Papers 0052, Boston University - Industry Studies Programme.
  3. Milgrom, Paul & Roberts, John, 1991. "Adaptive and sophisticated learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 82-100, February.
  4. Foster, Dean P. & Young, H. Peyton, 1998. "On the Nonconvergence of Fictitious Play in Coordination Games," Games and Economic Behavior, Elsevier, vol. 25(1), pages 79-96, October.
  5. Garcia, Alfredo & Reaume, Daniel & Smith, Robert L., 2000. "Fictitious play for finding system optimal routings in dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 147-156, February.
  6. Berger, Ulrich, 2005. "Fictitious play in 2 x n games," Journal of Economic Theory, Elsevier, vol. 120(2), pages 139-154, February.
  7. Bulow, Jeremy I & Geanakoplos, John D & Klemperer, Paul D, 1985. "Multimarket Oligopoly: Strategic Substitutes and Complements," Journal of Political Economy, University of Chicago Press, vol. 93(3), pages 488-511, June.
  8. I. Gilboa & A. Matsui, 2010. "Social Stability and Equilibrium," Levine's Working Paper Archive 534, David K. Levine.
  9. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
  10. Milgrom, P. & Shannon, C., 1991. "Monotone Comparative Statics," Papers 11, Stanford - Institute for Thoretical Economics.
  11. Monderer, Dov & Sela, Aner, 1996. "A2 x 2Game without the Fictitious Play Property," Games and Economic Behavior, Elsevier, vol. 14(1), pages 144-148, May.
  12. Vives, Xavier, 1990. "Nash equilibrium with strategic complementarities," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
  13. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0409001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.