IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v130y2016icp349-362.html
   My bibliography  Save this article

On the learning and stability of mixed strategy Nash equilibria in games of strategic substitutes

Author

Listed:
  • Hoffmann, Eric

Abstract

This paper analyzes the learning and stability of mixed strategy Nash equilibria in games of strategic substitutes (GSS), complementing recent work done in the case of strategic complements (GSC). Mixed strategies in GSS are of particular interest because it is well known that such games need not exhibit pure strategy Nash equilibria. First, we establish bounds on the strategy space which indicate where randomizing behavior may occur in equilibrium. Second, we show that mixed strategy Nash equilibria are generally unstable under a wide variety of learning rules. Multiple examples are given.

Suggested Citation

  • Hoffmann, Eric, 2016. "On the learning and stability of mixed strategy Nash equilibria in games of strategic substitutes," Journal of Economic Behavior & Organization, Elsevier, vol. 130(C), pages 349-362.
  • Handle: RePEc:eee:jeborg:v:130:y:2016:i:c:p:349-362
    DOI: 10.1016/j.jebo.2016.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016726811630141X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milgrom, Paul & Roberts, John, 1991. "Adaptive and sophisticated learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 82-100, February.
    2. Fudenberg Drew & Kreps David M., 1993. "Learning Mixed Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 320-367, July.
    3. Roy, Sunanda & Sabarwal, Tarun, 2012. "Characterizing stability properties in games with strategic substitutes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 337-353.
    4. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    5. Ed Hopkins & Robert M. Seymour, 2002. "The Stability of Price Dispersion under Seller and Consumer Learning," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(4), pages 1157-1190, November.
    6. Boylan Richard T. & El-Gamal Mahmoud A., 1993. "Fictitious Play: A Statistical Study of Multiple Economic Experiments," Games and Economic Behavior, Elsevier, vol. 5(2), pages 205-222, April.
    7. Ellison, Glenn & Fudenberg, Drew, 2000. "Learning Purified Mixed Equilibria," Journal of Economic Theory, Elsevier, vol. 90(1), pages 84-115, January.
    8. Federico Echenique & Aaron Edlin, 2001. "Mixed Equilibria in Games of Strategic Complements are Unstable," Levine's Working Paper Archive 563824000000000161, David K. Levine.
    9. Milgrom, Paul & Shannon, Chris, 1994. "Monotone Comparative Statics," Econometrica, Econometric Society, vol. 62(1), pages 157-180, January.
    10. Roy, Sunanda & Sabarwal, Tarun, 2010. "Monotone comparative statics for games with strategic substitutes," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 793-806, September.
    11. Dubey, Pradeep & Haimanko, Ori & Zapechelnyuk, Andriy, 2006. "Strategic complements and substitutes, and potential games," Games and Economic Behavior, Elsevier, vol. 54(1), pages 77-94, January.
    12. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    13. Lahkar, Ratul & Riedel, Frank, 2016. "The Continuous Logit Dynamic and Price Dispersion," Center for Mathematical Economics Working Papers 521, Center for Mathematical Economics, Bielefeld University.
    14. Steffen Huck & Hans-Theo Normann & Jörg Oechssler, 2002. "Stability of the Cournot process - experimental evidence," International Journal of Game Theory, Springer;Game Theory Society, vol. 31(1), pages 123-136.
    15. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    16. Federico Echenique, 2003. "Mixed equilibria in games of strategic complementarities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 22(1), pages 33-44, August.
    17. Govindan, Srihari & Reny, Philip J. & Robson, Arthur J., 2003. "A short proof of Harsanyi's purification theorem," Games and Economic Behavior, Elsevier, vol. 45(2), pages 369-374, November.
    18. Echenique, Federico & Edlin, Aaron, 2004. "Mixed equilibria are unstable in games of strategic complements," Journal of Economic Theory, Elsevier, vol. 118(1), pages 61-79, September.
    19. Kaniovski Yuri M. & Young H. Peyton, 1995. "Learning Dynamics in Games with Stochastic Perturbations," Games and Economic Behavior, Elsevier, vol. 11(2), pages 330-363, November.
    20. Crawford, Vincent P., 1985. "Learning behavior and mixed-strategy Nash equilibria," Journal of Economic Behavior & Organization, Elsevier, vol. 6(1), pages 69-78, March.
    21. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
    22. Aner Sela & Dorothea Herreiner, 1999. "Fictitious play in coordination games," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(2), pages 189-197.
    23. Ratul, Lahkar, 2011. "The dynamic instability of dispersed price equilibria," Journal of Economic Theory, Elsevier, vol. 146(5), pages 1796-1827, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Single-crossing property; Mixed strategies; Stability;

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:130:y:2016:i:c:p:349-362. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jebo .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.