IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Two Competing Models of How People Learn in Games

  • Ed Hopkins

    ()

    (University of Edinburgh)

Reinforcement learning and stochastic fictitious play are apparent rivals as models of human learning. They embody quite different assumptions about the processing of information and optimization. This paper compares their properties and finds that they are far more similar than were thought. In particular, the expected motion of stochastic fictitious play and reinforcement learning with experimentation can both be written as a perturbed form of the evolutionary replicator dynamics. Therefore they will in many cases have the same asymptotic behavior. In particular, local stability of mixed equilibria under stochastic fictitious play implies local stability under perturbed reinforcement learning. The main identifiable difference between the two models is speed: stochastic fictitious play gives rise to faster learning. Copyright The Econometric Society 2002.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.blackwellpublishing.com/ecta/asp/abstract.asp?iid=6&aid=372&vid=70
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Econometric Society in its journal Econometrica.

Volume (Year): 70 (2002)
Issue (Month): 6 (November)
Pages: 2141-2166

as
in new window

Handle: RePEc:ecm:emetrp:v:70:y:2002:i:6:p:2141-2166
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page: http://www.econometricsociety.org/
Email:


More information through EDIRC

Order Information: Web: https://www.econometricsociety.org/publications/econometrica/access/ordering-back-issues Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Eddie Dekel & Drew Fudenberg & David K. Levine, . "Payoff Information and Self-Confirming Equilibrium," ELSE working papers 040, ESRC Centre on Economics Learning and Social Evolution.
  2. Andreas Blume & Douglas V. DeJong & George R. Neumann & N. E. Savin, 2002. "Learning and communication in sender-receiver games: an econometric investigation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(3), pages 225-247.
  3. Glenn Ellison & Drew Fudenberg, 1998. "Learning Purified Mixed Equilibria," Harvard Institute of Economic Research Working Papers 1817, Harvard - Institute of Economic Research.
  4. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
  5. Gaunersdorfer Andrea & Hofbauer Josef, 1995. "Fictitious Play, Shapley Polygons, and the Replicator Equation," Games and Economic Behavior, Elsevier, vol. 11(2), pages 279-303, November.
  6. Rustichini, Aldo, 1999. "Optimal Properties of Stimulus--Response Learning Models," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 244-273, October.
  7. John Duffy & Ed Hopkins, 2010. "Learning, Information and Sorting in Market Entry Games: Theory and Evidence," Levine's Working Paper Archive 506439000000000355, David K. Levine.
  8. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
  9. Gale, John & Binmore, Kenneth G. & Samuelson, Larry, 1995. "Learning to be imperfect: The ultimatum game," Games and Economic Behavior, Elsevier, vol. 8(1), pages 56-90.
  10. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
  11. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
  12. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
  13. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
  14. Nick Feltovich & John Duffy, 1999. "Does observation of others affect learning in strategic environments? An experimental study," International Journal of Game Theory, Springer, vol. 28(1), pages 131-152.
  15. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
  16. Sarin, Rajiv & Vahid, Farshid, 2001. "Predicting How People Play Games: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 34(1), pages 104-122, January.
  17. Vriend, Nicolaas J., 1997. "Will reasoning improve learning?," Economics Letters, Elsevier, vol. 55(1), pages 9-18, August.
  18. Martin Posch, 1997. "Cycling in a stochastic learning algorithm for normal form games," Journal of Evolutionary Economics, Springer, vol. 7(2), pages 193-207.
  19. Binmore, Ken & Samuelson, Larry, 1999. "Evolutionary Drift and Equilibrium Selection," Review of Economic Studies, Wiley Blackwell, vol. 66(2), pages 363-93, April.
  20. David J. Cooper & Susan Garvin & John H. Kagel, 1997. "Signalling and Adaptive Learning in an Entry Limit Pricing Game," RAND Journal of Economics, The RAND Corporation, vol. 28(4), pages 662-683, Winter.
  21. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:70:y:2002:i:6:p:2141-2166. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.