IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v34y2001i1p104-122.html
   My bibliography  Save this article

Predicting How People Play Games: A Simple Dynamic Model of Choice

Author

Listed:
  • Sarin, Rajiv
  • Vahid, Farshid

Abstract

We use the model developed in Sarin and Vahid (1999, GEB) to explain the experiments reported in Erev and Roth (1998, AER). The model supposes that players maximize subject to their "beliefs" which are non-probabilistic and scalar-valued. They are intended to describe the payoffs the players subjectively assess they will obtain from a strategy. In an earlier paper (Sarin and Vahid (1997) we showed that the model predicted behaviour in repeated coordination games remarkably well, and better than equilibrium theory of reinforcement learning models. In this paper we show that the same one-parameter model can also explain behaviour in games with a unique mixed strategy Nash equilibrium better than alternative models. Hence, we obtain further support for the simple dynamic model.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sarin, Rajiv & Vahid, Farshid, 2001. "Predicting How People Play Games: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 34(1), pages 104-122, January.
  • Handle: RePEc:eee:gamebe:v:34:y:2001:i:1:p:104-122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(99)90783-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. Itzhak Gilboa & David Schmeidler, 1995. "Case-Based Decision Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 110(3), pages 605-639.
    3. Borgers, Tilman & Sarin, Rajiv, 2000. "Naive Reinforcement Learning with Endogenous Aspirations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 921-950, November.
    4. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    5. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    6. Sarin, Rajiv & Vahid, Farshid, 1999. "Payoff Assessments without Probabilities: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 28(2), pages 294-309, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:34:y:2001:i:1:p:104-122. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.