IDEAS home Printed from https://ideas.repec.org/p/edn/esedps/79.html

Attainability of Boundary Points under Reinforcement Learning

Author

Abstract

This paper investigates the properties of the most common form of reinforcement learning (the "basic model" of Erev and Roth, American Economic Review, 88, 848-881, 1998). Stochastic approximation theory has been used to analyse the local stability of fixed points under this learning process. However, as we show, when such points are on the boundary of the state space, for example, pure strategy equilibria, standard results from the theory of stochastic approximation do not apply. We offer what we believe to be the correct treatment of boundary points, and provide a new and more general result: this model of learning converges with zero probability to fixed points which are unstable under the Maynard Smith or adjusted version of the evolutionary replicator dynamics. For two player games these are the fixed points that are linearly unstable under the standard replicator dynamics.

Suggested Citation

  • Ed Hopkins & Martin Posch, 2003. "Attainability of Boundary Points under Reinforcement Learning," Edinburgh School of Economics Discussion Paper Series 79, Edinburgh School of Economics, University of Edinburgh.
  • Handle: RePEc:edn:esedps:79
    as

    Download full text from publisher

    File URL: http://www.econ.ed.ac.uk/papers/id79_esedps.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    2. Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
    3. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 0203, Economics Division, School of Social Sciences, University of Southampton.
    4. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    5. Laslier, Jean-Francois & Topol, Richard & Walliser, Bernard, 2001. "A Behavioral Learning Process in Games," Games and Economic Behavior, Elsevier, vol. 37(2), pages 340-366, November.
    6. Arthur, W Brian, 1993. "On Designing Economic Agents That Behave Like Human Agents," Journal of Evolutionary Economics, Springer, vol. 3(1), pages 1-22, February.
    7. Rustichini, Aldo, 1999. "Optimal Properties of Stimulus--Response Learning Models," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 244-273, October.
    8. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    9. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    10. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    11. Ellison, Glenn & Fudenberg, Drew, 2000. "Learning Purified Mixed Equilibria," Journal of Economic Theory, Elsevier, vol. 90(1), pages 84-115, January.
    12. William H. Sandholm, 2002. "Evolutionary Implementation and Congestion Pricing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 667-689.
    13. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    14. Martin Posch, 1997. "Cycling in a stochastic learning algorithm for normal form games," Journal of Evolutionary Economics, Springer, vol. 7(2), pages 193-207.
    15. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    16. Sarin, Rajiv & Vahid, Farshid, 1999. "Payoff Assessments without Probabilities: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 28(2), pages 294-309, August.
    17. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    18. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    2. Funai, Naoki, 2022. "Reinforcement learning with foregone payoff information in normal form games," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 638-660.
    3. Naoki Funai, 2019. "Convergence results on stochastic adaptive learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 907-934, November.
    4. Izquierdo, Luis R. & Izquierdo, Segismundo S. & Gotts, Nicholas M. & Polhill, J. Gary, 2007. "Transient and asymptotic dynamics of reinforcement learning in games," Games and Economic Behavior, Elsevier, vol. 61(2), pages 259-276, November.
    5. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    6. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    7. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    8. Alanyali, Murat, 2010. "A note on adjusted replicator dynamics in iterated games," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 86-98, January.
    9. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    10. Schuster, Stephan, 2010. "Network Formation with Adaptive Agents," MPRA Paper 27388, University Library of Munich, Germany.
    11. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    12. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    13. Schuster, Stephan, 2012. "Applications in Agent-Based Computational Economics," MPRA Paper 47201, University Library of Munich, Germany.
    14. Kets, W., 2008. "Networks and learning in game theory," Other publications TiSEM 7713fce1-3131-498c-8c6f-3, Tilburg University, School of Economics and Management.
    15. Erik Mohlin & Robert Ostling & Joseph Tao-yi Wang, 2014. "Learning by Imitation in Games: Theory, Field, and Laboratory," Economics Series Working Papers 734, University of Oxford, Department of Economics.
    16. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    17. Hopkins, Ed, 2007. "Adaptive learning models of consumer behavior," Journal of Economic Behavior & Organization, Elsevier, vol. 64(3-4), pages 348-368.
    18. Masiliūnas, Aidas, 2023. "Learning in rent-seeking contests with payoff risk and foregone payoff information," Games and Economic Behavior, Elsevier, vol. 140(C), pages 50-72.
    19. Willemien Kets, 2007. "The minority game: An economics perspective," Papers 0706.4432, arXiv.org.
    20. Norman, Thomas W.L., 2023. "Pigouvian algorithmic platform design," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 322-332.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:edn:esedps:79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Office (email available below). General contact details of provider: https://edirc.repec.org/data/deediuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.