IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v32y2008i5p1569-1599.html
   My bibliography  Save this article

A numerical analysis of the evolutionary stability of learning rules

Author

Listed:
  • Josephson, Jens

Abstract

In this paper, we define an evolutionary stability criterion for learning rules. Using simulations, we then apply this criterion to three types of symmetric 2x2 games for a class of learning rules that can be represented by the parametric model of Camerer and Ho [1999. Experience-weighted attraction learning in normal form games. Econometrica 67, 827-874]. This class contains stochastic versions of reinforcement and fictitious play as extreme cases. We find that only learning rules with high or intermediate levels of hypothetical reinforcement are evolutionarily stable, but that the stable parameters depend on the game.

Suggested Citation

  • Josephson, Jens, 2008. "A numerical analysis of the evolutionary stability of learning rules," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1569-1599, May.
  • Handle: RePEc:eee:dyncon:v:32:y:2008:i:5:p:1569-1599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(07)00157-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hanaki, Nobuyuki & Sethi, Rajiv & Erev, Ido & Peterhansl, Alexander, 2005. "Learning strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 56(4), pages 523-542, April.
    2. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    3. Timothy C. Salmon, 2001. "An Evaluation of Econometric Models of Adaptive Learning," Econometrica, Econometric Society, vol. 69(6), pages 1597-1628, November.
    4. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    5. Hopkins, Ed & Posch, Martin, 2005. "Attainability of boundary points under reinforcement learning," Games and Economic Behavior, Elsevier, vol. 53(1), pages 110-125, October.
    6. Hopkins, Ed, 1999. "Learning, Matching, and Aggregation," Games and Economic Behavior, Elsevier, pages 79-110.
    7. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    8. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    9. Heller, Dana, 2004. "An evolutionary approach to learning in a changing environment," Journal of Economic Theory, Elsevier, vol. 114(1), pages 31-55, January.
    10. Luca Anderlini & Hamid Sabourian, 1995. "The Evolution of Algorithmic Learning Rules: A Global Stability Result," Game Theory and Information 9510001, EconWPA.
    11. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    12. Nathaniel T Wilcox, 2006. "Theories of Learning in Games and Heterogeneity Bias," Econometrica, Econometric Society, vol. 74(5), pages 1271-1292, September.
    13. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, January.
    14. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
    15. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics,in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186 Elsevier.
    16. Teck H Ho & Colin Camerer & Juin-Kuan Chong, 2003. "Functional EWA: A one-parameter theory of learning in games," Levine's Working Paper Archive 506439000000000514, David K. Levine.
    17. Arthur J. Robson, 2001. "The Biological Basis of Economic Behavior," Journal of Economic Literature, American Economic Association, vol. 39(1), pages 11-33, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    2. Hanaki, Nobuyuki & Ishikawa, Ryuichiro & Akiyama, Eizo, 2009. "Learning games," Journal of Economic Dynamics and Control, Elsevier, vol. 33(10), pages 1739-1756, October.
    3. Josephson, Jens, 2009. "Stochastic adaptation in finite games played by heterogeneous populations," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1543-1554, August.
    4. Matros, Alexander, 2012. "Altruistic versus egoistic behavior in a Public Good game," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 642-656.
    5. Peter Duersch & Joerg Oechssler & Burkhard Schipper, 2011. "Once Beaten, Never Again: Imitation in Two-Player Potential Games," Working Papers 1112, University of California, Davis, Department of Economics.
    6. repec:eee:thpobi:v:91:y:2014:i:c:p:20-36 is not listed on IDEAS
    7. Teck H Ho & Colin Camerer & Juin-Kuan Chong, 2003. "Functional EWA: A one-parameter theory of learning in games," Levine's Working Paper Archive 506439000000000514, David K. Levine.
    8. Jurjen Kamphorst & Gerard van der Laan, 2006. "Learning in a Local Interaction Hawk-Dove Game," Tinbergen Institute Discussion Papers 06-034/1, Tinbergen Institute.
    9. Mohlin, Erik, 2012. "Evolution of theories of mind," Games and Economic Behavior, Elsevier, vol. 75(1), pages 299-318.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:32:y:2008:i:5:p:1569-1599. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.