IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-03672197.html

Multi-state choices with aggregate feedback on unfamiliar alternatives

Author

Listed:
  • Philippe Jehiel

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UCL - University College of London [London])

  • Juni Singh

    (UCL - University College of London [London])

Abstract

This paper studies a multi-state binary choice experiment in which in each state, one alternative has well understood consequences whereas the other alternative has unknown consequences. Subjects repeatedly receive feedback from past choices about the consequences of unfamiliar alternatives but this feedback is aggregated over states. Varying the payoffs attached to the various alternatives in various states allows us to test whether unfamiliar alternatives are discounted and whether subjects' use of feedback is better explained by similarity-based reinforcement learning models (in the spirit of the valuation equilibrium, Jehiel and Samet, 2007) or by some variant of Bayesian learning model. Our experimental data suggest that there is no discount attached to the unfamiliar alternatives and that similarity-based reinforcement learning models have a better explanatory power than their Bayesian counterparts.

Suggested Citation

  • Philippe Jehiel & Juni Singh, 2021. "Multi-state choices with aggregate feedback on unfamiliar alternatives," Post-Print halshs-03672197, HAL.
  • Handle: RePEc:hal:journl:halshs-03672197
    DOI: 10.1016/j.geb.2021.07.007
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Jehiel & Aviman Satpathy, 2024. "Coarse Q-learning in Decision-Making: Indifference vs. Indeterminacy vs. Instability," Papers 2412.09321, arXiv.org, revised Dec 2025.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-03672197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.