IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Two Competing Models of How People Learn in Games

  • Ed Hopkins

Reinforcement learning and stochastic fictitious play are apparent rivals as models of human learning. They embody quite different assumptions about the processing of information and optimization. This paper compares their properties and finds that they are far more similar than were thought. In particular, the expected motion of stochastic fictitious play and reinforcement learning with experimentation can both be written as a perturbed form of the evolutionary replicator dynamics. Therefore they will in many cases have the same asymptotic behavior. In particular, local stability of mixed equilibria under stochastic fictitious play implies local stability under perturbed reinforcement learning. The main identifiable difference between the two models is speed: stochastic fictitious play gives rise to faster learning. Copyright The Econometric Society 2002.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.najecon.org/v1.htm
File Function: brief review and links to paper
Download Restriction: no

Paper provided by www.najecon.org in its series NajEcon Working Paper Reviews with number 625018000000000226.

as
in new window

Length:
Date of creation: 21 Sep 2001
Date of revision:
Handle: RePEc:cla:najeco:625018000000000226
Contact details of provider: Web page: http://www.najecon.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Eddie Dekel & Drew Fudenberg & David K. Levine, . "Payoff Information and Self-Confirming Equilibrium," ELSE working papers 040, ESRC Centre on Economics Learning and Social Evolution.
  2. Glenn Ellison & Drew Fudenberg, 1998. "Learning Purified Mixed Equilibria," Harvard Institute of Economic Research Working Papers 1817, Harvard - Institute of Economic Research.
  3. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
  4. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
  5. John Duffy & Ed Hopkins, 2001. "Learning, Information and Sorting in Market Entry Games: Theory and Evidence," ESE Discussion Papers 78, Edinburgh School of Economics, University of Edinburgh.
  6. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
  7. Martin Posch, 1997. "Cycling in a stochastic learning algorithm for normal form games," Journal of Evolutionary Economics, Springer, vol. 7(2), pages 193-207.
  8. Sarin, Rajiv & Vahid, Farshid, 2001. "Predicting How People Play Games: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 34(1), pages 104-122, January.
  9. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
  10. Ken Binmore & Larry Samuelson, 1999. "Evolutionary Drift and Equilibrium Selection," Review of Economic Studies, Oxford University Press, vol. 66(2), pages 363-393.
  11. Nick Feltovich & John Duffy, 1999. "Does observation of others affect learning in strategic environments? An experimental study," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(1), pages 131-152.
  12. Vriend, Nicolaas J., 1997. "Will reasoning improve learning?," Economics Letters, Elsevier, vol. 55(1), pages 9-18, August.
  13. Andreas Blume & Douglas V. DeJong & George R. Neumann & N. E. Savin, 2002. "Learning and communication in sender-receiver games: an econometric investigation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(3), pages 225-247.
  14. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
  15. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
  16. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
  17. Rustichini, Aldo, 1999. "Optimal Properties of Stimulus--Response Learning Models," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 244-273, October.
  18. David J. Cooper & Susan Garvin & John H. Kagel, 1997. "Signalling and Adaptive Learning in an Entry Limit Pricing Game," RAND Journal of Economics, The RAND Corporation, vol. 28(4), pages 662-683, Winter.
  19. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
  20. Gale, John & Binmore, Kenneth G. & Samuelson, Larry, 1995. "Learning to be imperfect: The ultimatum game," Games and Economic Behavior, Elsevier, vol. 8(1), pages 56-90.
  21. Gaunersdorfer Andrea & Hofbauer Josef, 1995. "Fictitious Play, Shapley Polygons, and the Replicator Equation," Games and Economic Behavior, Elsevier, vol. 11(2), pages 279-303, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cla:najeco:625018000000000226. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.