IDEAS home Printed from
   My bibliography  Save this article

On Designing Economic Agents That Behave Like Human Agents


  • Arthur, W Brian


This paper explores the idea of constructing theoretical economic agents that behave like actual human agents and using them in neoclassical economic models. It does this in a repeated-choice setting by postulating "artificial agents" who use a learning algorithm calibrated against human learning data from psychological experiments. The resulting calibrated algorithm appears to replicate human learning behavior to a high degree and reproduces several "stylized facts" of learning. It can, therefore, be used to replace the idealized, perfectly rational agents in appropriate neoclassical models with "calibrated agents" that represent actual human behavior. The paper discusses the possibilities of using the algorithm to represent human learning in normal-form stage games and in more general neoclassical models in economics. It explores the likelihood of convergence to long-run optimality and to Nash behavior, and the "characteristic learning time" implicit in human adaptation in the economy.

Suggested Citation

  • Arthur, W Brian, 1993. "On Designing Economic Agents That Behave Like Human Agents," Journal of Evolutionary Economics, Springer, vol. 3(1), pages 1-22, February.
  • Handle: RePEc:spr:joevec:v:3:y:1993:i:1:p:1-22

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joevec:v:3:y:1993:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.